Unlabelled: Humanized A33 (huA33) is a promising monoclonal antibody that recognizes A33 antigen, which is present in more than 95% of colorectal cancers and in normal bowel. In this study, we took advantage of quantitative PET to evaluate (124)I huA33 targeting, biodistribution, and safety in patients with colorectal cancer. We also determined the biodistribution of (124)I-huA33 when a large dose of human intravenous IgG (IVIG) was administered to manipulate the Fc receptor or when (124)I-huA33 was given via hepatic arterial infusion (HAI).
View Article and Find Full Text PDFTargeted alpha-particle emitters hold great promise as therapeutics for micrometastatic disease. Because of their high energy deposition and short range, tumor targeted alpha-particles can result in high cancer-cell killing with minimal normal-tissue irradiation. Actinium-225 is a potential generator for alpha-particle therapy: it decays with a 10-day half-life and generates three alpha-particle-emitting daughters.
View Article and Find Full Text PDFThe long plasma half-life of IgG, while allowing for enhanced tumor uptake of tumor-targeted IgG conjugates, also results in increased background activity and normal-tissue toxicity. Therefore, successful therapeutic uses of conjugated antibodies have been limited to the highly sensitive and readily accessible hematopoietic tumors. We report a therapeutic strategy to beneficially alter the pharmacokinetics of IgG antibodies via pharmacological inhibition of the neonatal Fc receptor (FcRn) using high-dose IgG therapy.
View Article and Find Full Text PDFUnlabelled: Single-walled carbon nanotubes (CNT) are mechanically robust graphene cylinders with a high aspect ratio that are comprised of sp(2)-bonded carbon atoms and possessing highly regular structures with defined periodicity. CNT exhibit unique mechanochemical properties that can be exploited for the development of novel drug delivery platforms. We hypothesized that novel prototype nanostructures consisting of biologics, radionuclides, fluorochromes, and CNT could be synthesized and designed to target tumor cells.
View Article and Find Full Text PDFTumors build vessels by cooption of pre-existing vasculature and de novo recruitment of bone marrow (BM)-derived endothelial progenitor cells (EPCs). However, the contribution and the functional role of EPCs in tumor neoangiogenesis are controversial. Therefore, by using genetically marked BM progenitor cells, we demonstrate the precise spatial and temporal contribution of EPCs to the neovascularization of three transplanted and one spontaneous breast tumor in vivo using high-resolution microscopy and flow cytometry.
View Article and Find Full Text PDFCurrent limitations to applications of monoclonal antibody (mAb) targeted isotope generators in radioimmunotherapy include the low mAb labeling yields and the nonspecific radiation of normal tissues by nontargeted radioimmunoconjugates (RIC). Radiotoxicity occurs in normal organs that metabolize radiolabeled proteins and peptides, primarily liver and kidneys, or in radiosensitive organs with prolonged exposure to the isotope from the blood, such as the bone marrow. Actinium-225 nanogenerators also have the problem of released agar-emitting daughters.
View Article and Find Full Text PDFThe ability to reliably identify the peptides that can bind to MHC molecules is of practical importance for rapid vaccine development. Several computer-based prediction methods have been applied to study the interaction of MHC class I/peptide binding. Here we have compared the binding of peptides predicted by three algorithms (BIMAS, SYFPEITHI and Rankpep) to the binding of the peptides to HLA-A*0201 molecules in vitro, assessed using a MHC stabilization assay on live T2 cells.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
April 2006
Purpose: Internal irradiation of kidneys as a consequence of radioimmunotherapy, radiation accidents, or nuclear terrorism can result in radiation nephropathy. We attempted to modify pharmacologically, the functional and morphologic changes in mouse kidneys after injection with the actinium ((225)Ac) nanogenerator, an in vivo generator of alpha- and beta-particle emitting elements.
Methods And Materials: The animals were injected with 0.
Purpose: Presentation of exogenous antigen by MHC class I molecules, or cross-presentation, is a property of dendritic cells, which is considered crucial for the priming of cytotoxic T-cell response to tumor antigens. However, the precise mechanisms of this process are not fully understood.
Experimental Design And Results: We show here in a human in vitro system, using B lymphoma cells as a tumor model, that the cross-presentation of cell-associated antigens to T cells by dendritic cells requires "help" from natural killer cells.
The effect of external gamma irradiation on the kidneys is well described. However, the mechanisms of radiation nephropathy as a consequence of targeted radionuclide therapies are poorly understood. The functional and morphologic changes were studied chronologically (from 10 to 40 wk) in mouse kidneys after injection with an actinium-225 (225Ac) nanogenerator, a molecular-sized, antibody-targeted, in vivo generator of alpha-particle-emitting elements.
View Article and Find Full Text PDFAlpha-particle immunotherapy by targeted alpha-emitters or alpha-emitting isotope generators is a novel form of extraordinarily potent cancer therapy. A major impediment to the clinical use of targeted actinium-225 (225Ac) in vivo generators may be the radiotoxicity of the systemically released daughter radionuclides. The daughters, especially bismuth-213 (213Bi), tend to accumulate in the kidneys.
View Article and Find Full Text PDF