Publications by authors named "Jasperien de Weert"

The identification and prioritisation of water bodies presenting elevated levels of anthropogenic chemicals is a key aspect of environmental monitoring programmes. Albeit this is challenging owing to geographical scales, choice of indicator aquatic species used for chemical monitoring, and inherent need for an understanding of contaminant fate and distribution in the environment. Here, we propose an innovative methodology for identifying and ranking water bodies according to their levels of hydrophobic organic contaminants (HOCs) in water.

View Article and Find Full Text PDF

This study aimed at demonstrating that effect-based monitoring with passive sampling followed by toxicity profiling is more protective and cost-effective than the current chemical water quality assessment strategy consisting of compound-by-compound chemical analysis of selected substances in grab samples. Passive samplers were deployed in the Dutch river delta and in WWTP effluents. Their extracts were tested in a battery of bioassays and chemically analyzed to obtain toxicity and chemical profiles, respectively.

View Article and Find Full Text PDF

This study was carried out in the framework of the ICON project (Integrated Assessment of Contaminant Impacts on the North Sea) (Hylland et al., 2015) and aimed (1) to evaluate the toxicity of marine sediments using a battery of rapid toxicity bioassays, and; (2) to explore the applicability and data interpretation of in vitro toxicity profiling of sediment extracts obtained from ex situ passive sampling. Sediment samples were collected at 12 selected (estuarine, coastal, offshore) sites in the North Sea, Icelandic waters (as reference sites), south-western Baltic Sea and western Mediterranean during autumn 2008.

View Article and Find Full Text PDF

While in situ chemical oxidation with persulfate has seen wide commercial application, investigations into the impacts on groundwater characteristics, microbial communities and soil structure are limited. To better understand the interactions of persulfate with the subsurface and to determine the compatibility with further bioremediation, a pilot scale treatment at a diesel-contaminated location was performed consisting of two persulfate injection events followed by a single nutrient amendment. Groundwater parameters measured throughout the 225 day experiment showed a significant decrease in pH and an increase in dissolved diesel and organic carbon within the treatment area.

View Article and Find Full Text PDF

Nonylphenol (NP) is an endocrine disruptor present as a pollutant in river sediment. Biodegradation of NP can reduce its toxicological risk. As sediments are mainly anaerobic, degradation of linear (4-n-NP) and branched nonylphenol (tNP) was studied under methanogenic, sulphate reducing and denitrifying conditions in NP polluted river sediment.

View Article and Find Full Text PDF

Nonylphenol (NP) is an estrogenic pollutant which is widely present in the aquatic environment. Biodegradation of NP can reduce the toxicological risk. In this study, aerobic biodegradation of NP in river sediment was investigated.

View Article and Find Full Text PDF

Insight into the pathways of biodegradation and external factors controlling their activity is essential in adequate environmental risk assessment of chlorinated aliphatic hydrocarbon pollution. This study focuses on biodegradation of 1,2-dichloroethane (1,2-DCA) in microcosms containing sediment sourced from the European rivers Ebro, Elbe and Danube. Biodegradation was studied under different redox conditions.

View Article and Find Full Text PDF
Article Synopsis
  • - Nonylphenol (NP) is an environmental endocrine disruptor, with its bioavailability and biodegradability studied in the contaminated sediment of a tributary of the Ebro River, Spain.
  • - The study showed that over 95% of NP quickly desorbed into the water and that aerobic biodegradation effectively reduced both NP concentration and its estrogenic activity by 97% and 94%, respectively.
  • - The findings suggest that NP can serve as an indicator for monitoring estrogenic activity in sediment, while also indicating that other estrogenic compounds may be present, warranting further examination in different river sediments.
View Article and Find Full Text PDF

An anaerobic, halorespiring bacterium (strain PCE-M2(T) = DSM 13726(T) = ATCC BAA-583(T)) able to reduce tetrachloroethene to cis-dichloroethene was isolated from an anaerobic soil polluted with chlorinated aliphatic compounds. The isolate is assigned to the genus Sulfurospirillum as a novel species, Sulfurospirillum halorespirans sp. nov.

View Article and Find Full Text PDF