Publications by authors named "Jasper P Fried"

Nanopore sensing is a popular biosensing strategy that is being explored for the quantitative analysis of biomarkers. With low concentrations of analytes, nanopore sensors face challenges related to slow response times and selectivity. Here, we demonstrate an approach to rapidly detect species at ultralow concentrations using an optical nanopore blockade sensor for quantitative detection of the protein vascular endothelial growth factor (VEGF).

View Article and Find Full Text PDF

Nanopores are promising sensing devices that can be used for the detection of analytes at the single molecule level. It is of importance to understand and model the current response of a nanopore sensor for improving the sensitivity of the sensor, a better interpretation of the behaviours of different analytes in confined nanoscale spaces, and quantitative analysis of the properties of the targets. The current response of a nanopore sensor, usually called a resistive pulse, results from the change in nanopore resistance when an analyte translocates through the nanopore.

View Article and Find Full Text PDF

Nanopore sensors have received significant interest for the detection of clinically important biomarkers with single-molecule resolution. These sensors typically operate by detecting changes in the ionic current through a nanopore due to the translocation of an analyte. Recently, there has been interest in developing optical readout strategies for nanopore sensors for quantitative analysis.

View Article and Find Full Text PDF

Controlled breakdown has recently emerged as a highly appealing technique to fabricate solid-state nanopores for a wide range of biosensing applications. This technique relies on applying an electric field of approximately 0.4-1 V nm across the membrane to induce a current, and eventually, breakdown of the dielectric.

View Article and Find Full Text PDF

Nanopores in solid-state membranes are promising for a wide range of applications including DNA sequencing, ultra-dilute analyte detection, protein analysis, and polymer data storage. Techniques to fabricate solid-state nanopores have typically been time consuming or lacked the resolution to create pores with diameters down to a few nanometres, as required for the above applications. In recent years, several methods to fabricate nanopores in electrolyte environments have been demonstrated.

View Article and Find Full Text PDF

We analyze the noise in liquid-gated, room temperature, graphene quantum dots. These devices display extremely large noise amplitudes. The observed noise is explained in terms of a charge noise model by considering fluctuations in the applied source-drain and gate potentials.

View Article and Find Full Text PDF