Publications by authors named "Jasper J Koning"

Impressive advances have been made to replicate human physiology over the last few years due to the growth of the organ-on-chip (OoC) field in both industrial and academic settings. OoCs are a type of microphysiological system (MPS) that imitates functional and dynamic aspects of native human organ biology on a microfluidic device. Organoids and organotypic models, ranging in their complexity from simple single-cell to complex multi-cell type constructs, are being incorporated into OoC microfluidic devices to better mimic human physiology.

View Article and Find Full Text PDF

Background: Dysregulation of skin metabolism is associated with a plethora of diseases such as psoriasis and dermatitis. Until now, reconstructed human skin (RhS) models lack the metabolic potential of native human skin, thereby limiting their relevance to study human healthy and diseased skin. We aimed to determine whether incorporation of an adipocyte-containing hypodermis into RhS improves its metabolic potential and to identify major metabolic pathways up-regulated in adipose-RhS.

View Article and Find Full Text PDF

Background: Human lymph node (HuLN) models have emerged with invaluable potential for immunological research and therapeutic application given their fundamental role in human health and disease. While fibroblastic reticular cells (FRCs) are instrumental to HuLN functioning, their inclusion and recognition of importance for organotypic in vitro lymphoid models remain limited.

Methods: Here, we established an in vitro three-dimensional (3D) model in a collagen-fibrin hydrogel with primary FRCs and a dendritic cell (DC) cell line (MUTZ-3 DC).

View Article and Find Full Text PDF

Investigating systemic toxicity is still a huge challenge. Here, a multi-organ-on-chip approach is presented as a typical case of topical exposure of oral mucosa to metals, which are known to activate the immune system and in turn may result in skin inflammation. Reconstructed human gingiva (RHG) and reconstructed human skin containing MUTZ-3-derived Langerhans cells (MUTZ-LC) in the epidermis (RHS-LC) were incorporated into a HUMIMIC Chip3plus, connected by dynamic flow and cultured for a total period of 72 h.

View Article and Find Full Text PDF

Specialized stromal cells occupy and help define B- and T-cell domains, which are crucial for proper functioning of our immune system. Signaling through lymphotoxin and TNF receptors is crucial for the development of different stromal subsets, which are thought to arise from a common precursor. However, mechanisms that control the selective generation of the different stromal phenotypes are not known.

View Article and Find Full Text PDF

The tissue dynamics that govern maintenance and regeneration of the pancreas remain largely unknown. In particular, the presence and nature of a cellular hierarchy remains a topic of debate. Previous lineage tracing strategies in the pancreas relied on specific marker genes for clonal labeling, which left other populations untested and failed to account for potential widespread phenotypical plasticity.

View Article and Find Full Text PDF

Whole mount tissue immunolabeling and imaging of complete organs has tremendous benefits in characterizing organ morphology. Here, we present a straightforward method for immunostaining, clearing and imaging of whole murine peripheral lymph nodes (PLNs) for detailed analysis of their architecture and discuss all procedures in detail in a step-by-step approach. Given the importance of tumor necrosis factor receptor (TNFR) signaling in development of PLNs we used TNFRI and TNFRII mice models as proof-of-concept for this technique by visualizing and analyzing structural changes in PLN B cell clusters and high endothelial venules (HEVs).

View Article and Find Full Text PDF

Blood vascular endothelial cells (BECs) control the immune response by regulating blood flow and immune cell recruitment in lymphoid tissues. However, the diversity of BEC and their origins during immune angiogenesis remain unclear. Here we profile transcriptomes of BEC from peripheral lymph nodes and map phenotypes to the vasculature.

View Article and Find Full Text PDF

Visceral leishmaniasis (VL) is caused by or infection. One of the main problems related to this disease is the emergence of severe clinical forms with a lethality of 5-20%, even while under specific treatment. In humans and other species susceptible to fatal VL, such as dogs and hamsters, the disruption of splenic white pulp (WP) is accompanied by disease progression.

View Article and Find Full Text PDF

Secondary lymphoid organs are critical for efficient interaction between innate antigen presenting cells and adaptive lymphocytes in order to start adaptive immune responses. The efficiency by which these cellular subsets meet is highly increased by the orchestrating role of stromal cells within the secondary lymphoid organs. These cells provide cytokines, chemokines and cell surface receptors necessary for survival and guided migration.

View Article and Find Full Text PDF

Within lymph nodes (LNs), T follicular helper (T) cells help B cells to produce antibodies, which can either be protective or autoreactive. Here, we demonstrate that murine LN stromal cells (LNSCs) suppress the formation of autoreactive T cells in an antigen-specific manner, thereby significantly reducing germinal center B cell responses directed against the same self-antigen. Mechanistically, LNSCs express and present self-antigens in major histocompatibility complex (MHC) class II, leading to the conversion of naive CD4 T cells into T regulatory (T) cells in an interleukin-2 (IL-2)-dependent manner.

View Article and Find Full Text PDF

Most women with epithelial ovarian cancer (EOC) suffer from peritoneal carcinomatosis upon first clinical presentation. Extensive peritoneal carcinomatosis has a poor prognosis and its pathophysiology is not well understood. Although treatment with systemic intravenous chemotherapy is often initially successful, peritoneal recurrences occur regularly.

View Article and Find Full Text PDF
Article Synopsis
  • * In a study using mice, researchers examined how the presence or absence of PVAT affects muscle perfusion and glucose uptake during insulin stimulation, finding that PVAT is essential for proper IMVR.
  • * The removal of PVAT not only disrupted the blood flow to muscles but also altered important protein clusters involved in metabolism, indicating a significant role of PVAT in managing vascular health and metabolic processes relevant to conditions like obesity and diabetes.
View Article and Find Full Text PDF

Lymph nodes (LNs) are crucial for the orchestration of immune responses. LN reactions depend on interactions between incoming and local immune cells, and stromal cells. To mediate these cellular interactions an organized vascular network within the LN exists.

View Article and Find Full Text PDF

To date, available treatment strategies for multiple sclerosis (MS) are ineffective in preventing or reversing progressive neurologic deterioration, creating a high, and unmet medical need. One potential way to fight MS may be by limiting the detrimental effects of reactive astrocytes, a key pathological hallmark for disease progression. One class of compounds that may exert beneficial effects via astrocytes are melanocortin receptor (MCR) agonists.

View Article and Find Full Text PDF

Innate lymphoid cells (ILCs) guard epithelial tissue integrity during homeostasis, but can be potent immune effector cells during inflammation. Precursors to all ILC subsets (ILC precursors [ILCP]) have been identified in human peripheral blood (PB). We found that during homeostasis, ILCP in PB of mouse and human expressed homing receptors for secondary lymphoid organs, mainly CD62L.

View Article and Find Full Text PDF

For full activation of naïve adaptive lymphocytes in skin-draining lymph nodes (LNs), presentation of peptide:MHC complexes by LN-resident and skin-derived dendritic cells (DCs) that encountered antigens (Ags) is an absolute prerequisite. To get to the nearest draining LN upon intradermal immunization, DCs need to migrate from the infection site to the afferent lymphatics, which can only be reached by traversing a collagen-dense network located in the dermis of the skin through the activity of proteolytic enzymes. Here, we show that mice with altered collagen fibrillogenesis resulting in thicker collagen fibers in the skin display a reduced DC migration to the draining LN upon immune challenge.

View Article and Find Full Text PDF
Article Synopsis
  • A specific group of innate lymphoid cells (ILC3s) expressing Neuropilin1 (NRP1) is found in lymphoid tissues but not in peripheral blood or skin, indicating their unique localization and function.* -
  • These NRP1 ILC3s exhibit lymphoid tissue inducer (LTi) activity and are located near high endothelial venules (HEVs), playing a role in lymphocyte migration within secondary lymphoid tissues.* -
  • In humans, NRP1 ILC3s are characterized as primed cells that produce more cytokines and are linked to conditions such as smoking and chronic obstructive pulmonary disease, suggesting their involvement in processes like angiogenesis and formation of lymphoid aggregates
View Article and Find Full Text PDF

During embryogenesis, lymph nodes form through intimate interaction between lymphoid tissue inducer and lymphoid tissue organizer (LTo) cells. Shortly after birth in mice, specialized stromal cell subsets arise that organize microenvironments within the lymph nodes; however, their direct precursors have not yet been identified. In the bone marrow, mesenchymal stem cells are labeled with GFP in nestin-GFP mice, and we show that during all stages of development, nestin(+) cells are present within lymph nodes of these mice.

View Article and Find Full Text PDF

Factors regulating leukocyte migration to neonatal lymph nodes are not sufficiently identified. In this issue of Immunity, Zhang et al. (2016) reveal that fungi drive emigration of gut DCs to lymph nodes, where these DCs instruct endothelial cell receptivity to leukocytes.

View Article and Find Full Text PDF

Introduction: The inverse correlation between prevalence of auto-immune disorders like the chronic neuro-inflammatory disease multiple sclerosis (MS) and the occurrence of helminth (worm) infections, suggests that the helminth-trained immune system is protective against auto-immunity. As monocytes are regarded as crucial players in the pathogenesis of auto-immune diseases, we explored the hypothesis that these innate effector cells are prime targets for helminths to exert their immunomodulatory effects.

Results: Here we show that soluble products of the porcine nematode Trichuris suis (TsSP) are potent in changing the phenotype and function of human monocytes by skewing classical monocytes into anti-inflammatory patrolling cells, which exhibit reduced trans-endothelial migration capacity in an in vitro model of the blood-brain barrier.

View Article and Find Full Text PDF

Non-hematopoietic lymph node stromal cells shape immunity by inducing MHC-I-dependent deletion of self-reactive CD8 T cells and MHC-II-dependent anergy of CD4 T cells. In this study, we show that MHC-II expression on lymph node stromal cells is additionally required for homeostatic maintenance of regulatory T cells (Tregs) and maintenance of immune quiescence. In the absence of MHC-II expression in lymph node transplants, i.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) show great therapeutic potential for the treatment of various immune mediated diseases, including Multiple Sclerosis (MS). Systemic administration of MSCs during experimental allergic encephalomyelitis (EAE), an animal model for MS, was shown to reduce the infiltration of T cells, B cells, and macrophages into the CNS. Whether endogenous MSCs are mobilized and potentially modulate the severity of disease is not known.

View Article and Find Full Text PDF

Lymph nodes are strategically located throughout the body to allow lymphocytes to efficiently encounter their cognate antigen and become activated. The structure of the lymph nodes is such that B and T lymphocytes each have their own microdomain. This structure is provided by lymph node stromal cells, which also provide the lymphocytes with a scaffold upon which to migrate.

View Article and Find Full Text PDF