Publications by authors named "Jasper A Vrugt"

The feedback of topsoil moisture (SM) content on convective clouds and precipitation is not well understood and represented in the current generation of weather and climate models. Here, we use functional decomposition of satellite-derived SM and cloud vertical profiles (CVP) to quantify the relationship between SM and the vertical distribution of cloud water in the central US. High-dimensional model representation is used to disentangle the contributions of SM and other land-surface and atmospheric variables to the CVP.

View Article and Find Full Text PDF

In the past decades, many different approaches have been developed in the literature to quantify the load-carrying capacity and geotechnical stability (or the Factor of Safety, ) of variably saturated hillslopes. Much of this work has focused on a deterministic characterization of hillslope stability. Yet, simulated values are subject to considerable uncertainty due to our inability to characterize accurately the soil mantle's properties (hydraulic, geotechnical and geomorphologic) and spatiotemporal variability of the moisture content of the hillslope interior.

View Article and Find Full Text PDF

The daunting complexity of ecosystems has led ecologists to use mathematical modelling to gain understanding of ecological relationships, processes and dynamics. In pursuit of mathematical tractability, these models use simplified descriptions of key patterns, processes and relationships observed in nature. In contrast, ecological data are often complex, scale-dependent, space-time correlated, and governed by nonlinear relations between organisms and their environment.

View Article and Find Full Text PDF

Summary: Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM(ZS)] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012).

View Article and Find Full Text PDF

Photosynthetic capacity, determined by light harvesting and carboxylation reactions, is a key plant trait that determines the rate of photosynthesis; however, in Earth System Models (ESMs) at a reference temperature, it is either a fixed value for a given plant functional type or derived from a linear function of leaf nitrogen content. In this study, we conducted a comprehensive analysis that considered correlations of environmental factors with photosynthetic capacity as determined by maximum carboxylation (V(cm)) rate scaled to 25 degrees C (i.e.

View Article and Find Full Text PDF

Catchment urbanization perturbs the water and sediment budgets of streams, degrades stream health and function, and causes a constellation of flow, water quality, and ecological symptoms collectively known as the urban stream syndrome. Low-impact development (LID) technologies address the hydrologic symptoms of the urban stream syndrome by mimicking natural flow paths and restoring a natural water balance. Over annual time scales, the volumes of stormwater that should be infiltrated and harvested can be estimated from a catchment-scale water-balance given local climate conditions and preurban land cover.

View Article and Find Full Text PDF

Knowledge of concentrations and elemental ratios of suspended particles are important for understanding many biogeochemical processes in the ocean. These include patterns of phytoplankton nutrient limitation as well as linkages between the cycles of carbon and nitrogen or phosphorus. To further enable studies of ocean biogeochemistry, we here present a global dataset consisting of 100,605 total measurements of particulate organic carbon, nitrogen, or phosphorus analyzed as part of 70 cruises or time-series.

View Article and Find Full Text PDF

The Cyanobacteria Prochlorococcus and Synechococcus account for a substantial fraction of marine primary production. Here, we present quantitative niche models for these lineages that assess present and future global abundances and distributions. These niche models are the result of neural network, nonparametric, and parametric analyses, and they rely on >35,000 discrete observations from all major ocean regions.

View Article and Find Full Text PDF

In the last few decades, evolutionary algorithms have emerged as a revolutionary approach for solving search and optimization problems involving multiple conflicting objectives. Beyond their ability to search intractably large spaces for multiple solutions, these algorithms are able to maintain a diverse population of solutions and exploit similarities of solutions by recombination. However, existing theory and numerical experiments have demonstrated that it is impossible to develop a single algorithm for population evolution that is always efficient for a diverse set of optimization problems.

View Article and Find Full Text PDF

The sustainability of irrigated agriculture in many arid and semiarid areas of the world is at risk because of a combination of several interrelated factors, including lack of fresh water, lack of drainage, the presence of high water tables, and salinization of soil and groundwater resources. Nowhere in the United States are these issues more apparent than in the San Joaquin Valley of California. A solid understanding of salinization processes at regional spatial and decadal time scales is required to evaluate the sustainability of irrigated agriculture.

View Article and Find Full Text PDF

One of the best approaches to date to obtain overall binding constants (Ko) for Al and dissolved organic matter (DOM) from acidic soil solutions is to collect 'free' Al data with diffusive gradients in thin films (DGT) and to infer the Ko values by fitting a continuous distribution model based on Scatchard plots. Although there is clear established literature demonstrating the usefulness of the Scatchard approach, relatively little attention has been given to a realistic assessment of the uncertainties associated with the final fitted Ko values. In this study we present an uncertainty analysis of the fitted Ko values using a synthetic dataset with different levels of random noise and a real data set using DGT data from an acidic soil solution.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how copper (Cu) interacts with dissolved organic matter (DOM) from forest floors, focusing on Cu's behavior at different pH levels and copper-to-carbon (Cu/C) ratios.
  • The results indicated that the amount of dissolved Cu-DOM complexes peaked at pH 4.5, but decreased as Cu/C ratios increased, with only a small amount of precipitated Cu observed across the tested ratios.
  • The research also analyzed the uncertainty in the calculated stability constants for Cu-DOM complexes, revealing that while the optimal model fit was strong, the stability constants had significant uncertainty, showing consistent values across different pH levels.
View Article and Find Full Text PDF