Publications by authors named "Jason de Joannis"

In this combined experimental (deep ultraviolet resonance Raman (DUVRR) spectroscopy and atomic force microscopy (AFM)) and theoretical (molecular dynamics (MD) simulations and stress-strain (SS)) study, the structural and mechanical properties of amyloid beta (Aβ40) fibrils have been investigated. The DUVRR spectroscopy and AFM experiments confirmed the formation of linear, unbranched and β-sheet rich fibrils. The fibrils (Aβ40)n, formed using n monomers, were equilibrated using all-atom MD simulations.

View Article and Find Full Text PDF

Mixed MD/MC simulation at fixed difference in chemical potential (Δμ) between two lipid types provides a computational indicator of the relative affinities of the two lipids for different environments. Applying this technique to ternary DPPC/DOPC/cholesterol bilayers yields a DPPC/DOPC ratio that increases with increasing cholesterol content at fixed Δμ, consistent with the known enrichment of DPPC and cholesterol-rich in liquid-ordered phase domains in the fluid-fluid coexistence region of the ternary phase diagram. Comparison of the cholesterol-dependence of PC compositions at constant Δμ with experimentally measured coexistence tie line end point compositions affords a direct test of the faithfulness of the atomistic model to experimental phase behavior.

View Article and Find Full Text PDF

The partitioning of lipids among different microenvironments in a bilayer is of considerable relevance to characterization of composition variations in biomembranes. Atomistic simulation has been ill-suited to model equilibrated lipid mixtures because the time required for diffusive exchange of lipids among microenvironments exceeds typical submicrosecond molecular dynamics trajectories. A method to facilitate local composition fluctuations, using Monte Carlo mutations to change lipid structures within the semigrand-canonical ensemble (at a fixed difference in component chemical potentials, Deltamu), was recently implemented to address this challenge.

View Article and Find Full Text PDF

A molecular dynamics simulation was carried out involving a paclitaxel molecule, 987 peptoad molecules, and 35 938 water molecules (conditions shown experimentally to effect paclitaxel solubilization in water). The peptoads are shown to form large clumps, the centers of which are dry and thus favorable to hydrogen bonding between paclitaxel and peptoads. Hydrogen-bonding equilibrium among the peptoads themselves in the developing clumps is achieved in 2 ns.

View Article and Find Full Text PDF

Conventional molecular dynamics (MD) simulations are seriously limited by the slow rate of diffusive mixing in their ability to predict lateral distributions of different lipid types within mixed-lipid bilayers using atomistic models. A method to overcome this limitation, using configuration-bias Monte Carlo (MC) "mutation" moves to transform lipids from one type to another in dynamic equilibrium, is demonstrated in binary fluid-phase mixtures of lipids whose tails differ in length by four carbons. The hybrid MC-MD method operates within a semigrand canonical ensemble, so that an equilibrium composition of the mixture is determined by a constant difference in chemical potential (Delta(mu)) chosen for the components.

View Article and Find Full Text PDF

Bilayer disks and ribbons composed of a mixture of short- and long-tail phospholipids have been studied by molecular dynamics with a coarse-grained model. The effects of system composition on the edge structure, composition, and line tension were analyzed. Increases in the fraction of short-tail lipids tend to decrease the line tension (i.

View Article and Find Full Text PDF