A series of compounds was designed and synthesized having two imidazolium rings separated by a polymethylene spacer and having alkyl substituents on each of the imidazolium rings. The compounds were assayed for their effects on the activity of galactosyltransferase WbwC, and also on the growth of Gram-negative and Gram-positive bacteria, as well as human cells. The inhibition observed on enzyme activities and cell growth was dependent on the total number of carbons in the spacer and the alkyl substituents on the imidazolium rings.
View Article and Find Full Text PDFThe development of isozyme-selective heme oxygenase (HO) inhibitors promises powerful pharmacological tools to elucidate the regulatory characteristics of the HO system. It is already known that HO has cytoprotective properties with a role in several disease states; thus, it is an enticing therapeutic target. Historically, the metalloporphyrins have been used as competitive HO inhibitors based on their structural similarity to the substrate, heme.
View Article and Find Full Text PDFGalactosyltransferases are a family of enzymes responsible for the synthesis of glycan chains which are involved in cell proliferation, adhesion and apoptosis. A recently synthesized galactosyltransferase inhibitor, 2-naphthyl 2-butanamido-2-deoxy-1-thio-β-D-glucopyranoside (612), has been found to selectively inhibit β1,4-galactosyltransferase over β1,3-galactosyltransferase and, therefore, has potential to suppress the synthesis of cancer associated epitopes. However, the application of this inhibitory activity in biological systems remains unknown.
View Article and Find Full Text PDFMetalloporphyrin heme oxygenase (HO) inhibitors have made an important contribution to elucidating the role of HO in physiological processes. Nevertheless, their off-target effects have drawn substantial criticism, which prompted us to develop non-porphyrin, azole-based inhibitors of HO. These second-generation HO inhibitors were evaluated using spleen and brain microsomes from rats as native sources of HO-1 and HO-2, respectively.
View Article and Find Full Text PDFUnlabelled: The opportunistic pathogen Pseudomonas aeruginosa produces two major cell surface lipopolysaccharides, characterized by distinct O antigens, called common polysaccharide antigen (CPA) and O-specific antigen (OSA). CPA contains a polymer of D-rhamnose (D-Rha) in α1-2 and α1-3 linkages. Three putative glycosyltransferase genes, wbpX, wbpY, and wbpZ, are part of the CPA biosynthesis cluster.
View Article and Find Full Text PDFHeme oxygenase-1 (HO-1) encoded by the HMOX1 gene is a 32-kDa stress protein that catabolizes heme to biliverdin, free iron, and carbon monoxide (CO). Glial HO-1 is over-expressed in the CNS of subjects with Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). The HMOX1 gene is exquisitely sensitive to oxidative stress and is induced in brain and other tissues in various models of disease and trauma.
View Article and Find Full Text PDFEscherichia coli displays O antigens on the outer membrane that play an important role in bacterial interactions with the environment. The O antigens of enterohemorrhagic E. coli O104 and O5 contain a Galβ1-3GalNAc disaccharide at the reducing end of the repeating unit.
View Article and Find Full Text PDFSeveral analogs based on the lead structure of 1-(4-chlorobenzyl)-2-(pyrrolidin-1-ylmethyl)-1H-benzimidazole (clemizole) were synthesized and evaluated as novel inhibitors of heme oxygenase (HO). Many of the compounds were found to be potent and highly selective for the HO-2 isozyme (constitutive), and had substantially less inhibitory activity on the HO-1 isozyme (inducible). The compounds represent the first report of highly potent and selective inhibitors of HO-2 activity, and complement our suite of selective HO-1 inhibitors.
View Article and Find Full Text PDFBackground: Modifications of proteins by O-glycosylation determine many of the properties and functions of proteins. We wish to understand the mechanisms of O-glycosylation and develop inhibitors that could affect glycoprotein functions and alter cellular behavior.
Methods: We expressed recombinant soluble human Gal- and GlcNAc-transferases that synthesize the O-glycan cores 1 to 4 and are critical for the overall structures of O-glycans.
The interaction between DNA and members of series of bivalent imidazole compounds, monovalent and bivalent imidazolium compounds, and monovalent and bivalent tetrazolium compounds, which had been synthesized and evaluated for their anti-Plasmodium activity, has been examined using the displacement of SYBR Green I as a measure of competitive binding. The degree of interaction with DNA appears to be dependent on both hydrophobic and charge-pairing interactions.
View Article and Find Full Text PDFGalactosyltransferases (GalTs) extend the glycan chains of mammalian glycoproteins by adding Gal to terminal GlcNAc residues, and thus build the scaffolds for biologically important glycan structures. We have shown that positively charged bivalent imidazolium salts in which the two imidazolium groups are linked by an aliphatic chain of 20 or 22 carbons form potent inhibitors of purified human β3-GalT5, using GlcNAcβ-benzyl as acceptor substrate. The inhibitors are not substrate analogs and also inhibited a selected number of other glycosyltransferases.
View Article and Find Full Text PDFThe development of heme oxygenase (HO) inhibitors, especially those that are isozyme-selective, promises powerful pharmacological tools to elucidate the regulatory characteristics of the HO system. It is already known that HO has cytoprotective properties and may play a role in several disease states, making it an enticing therapeutic target. Traditionally, the metalloporphyrins have been used as competitive HO inhibitors owing to their structural similarity with the substrate, heme.
View Article and Find Full Text PDFThe enterohemorrhagic O157 strain of Escherichia coli, which is one of the most well-known bacterial pathogens, has an O-antigen repeating unit structure with the sequence [-2-d-Rha4NAcα1-3-l-Fucα1-4-d-Glcβ1-3-d-GalNAcα1-]. The O-antigen gene cluster of E. coli O157 contains the genes responsible for the assembly of this repeating unit and includes wbdN.
View Article and Find Full Text PDFSeveral α-(1H-imidazol-1-yl)-ω-phenylalkanes were synthesized and evaluated as novel inhibitors of heme oxygenase (HO). These compounds were found to be potent and selective for the stress-induced isozyme HO-1, showing mostly weak activity toward the constitutive isozyme HO-2. The introduction of an oxygen atom in the alkyl linker produced analogues with decreased potency toward HO-1, whereas the presence of a sulfur atom in the linker gave rise to analogues with greater potency toward HO-1 than the carbon-containing analogues.
View Article and Find Full Text PDFThe development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site.
View Article and Find Full Text PDFA series of compounds containing bivalent imidazolium rings and one triazolium analog were synthesized and evaluated for their ability to inhibit the replication of Plasmodium falciparum cultures. The activity and selectivity of the compounds for P. falciparum cultures were found to depend on the presence of electron-deficient rings that were spaced an appropriate distance apart.
View Article and Find Full Text PDFPrevious studies by our research group have been concerned with the design of selective inhibitors of heme oxygenases (HO-1 and HO-2). The majority of these were based on a four-carbon linkage of an azole, usually an imidazole, and an aromatic moiety. In the present study, we designed and synthesized a series of inhibition candidates containing a shorter linkage between these groups, specifically, a series of 1-aryl-2-(1H-imidazol-1-yl/1H-1,2,4-triazol-1-yl)ethanones and their derivatives.
View Article and Find Full Text PDFWe have previously reported that tetrazolium salts were both potent and specific inhibitors of Plasmodium replication, and that they appear to interact with a parasite component that is both essential and conserved. The use of tetrazolium salts in vivo is limited by the potential reduction of the tetrazolium ring to form an inactive, neutral acyclic formazan. To address this issue imidazolium and triazolium salts were synthesized and evaluated as Plasmodium inhibitors.
View Article and Find Full Text PDFJ Pharmacol Toxicol Methods
August 2011
Introduction: Sensitive assays for measuring heme oxygenase activity have been based on the gas-chromatographic detection of carbon monoxide using elaborate, expensive equipment. The present study describes a rapid and convenient method for screening imidazole-containing candidates for inhibitory activity against heme oxygenase using a plate reader, based on the spectroscopic evaluation of heme degradation.
Methods: A PowerWave XS plate reader was used to monitor the absorbance (as a function of time) of heme bound to purified truncated human heme oxygenase-1 (hHO-1) in the individual wells of a standard 96-well plate (with or without the addition of a test compound).
Recombinant truncated forms of heme oxygenase-1 and -2 (HO-1 and HO-2) were compared with their crude microsomal counterparts from brain and spleen tissue of adult male rats with respect to their inhibition by azole-based, nonporphyrin HO inhibitors. The drugs tested were an imidazole-alcohol, an imidazole-dioxolane, and a triazole-ketone. Both the recombinant and crude forms of HO-2 were similarly inhibited by the 3 drugs.
View Article and Find Full Text PDFHeme oxygenases (HOs) catalyze the degradation of heme to biliverdin, carbon monoxide (CO), and free iron. The two major isoforms, HO-1 (inducible) and HO-2 (constitutive), are involved in a variety of physiological functions, including inflammation, apoptosis, neuromodulation, and vascular regulation. Major tools used in exploring these actions have been metalloporphyrin analogs of heme that inhibit the HOs.
View Article and Find Full Text PDFThe development of inhibitors specific for heme oxygenases (HO) aims to provide powerful tools in understanding the HO system. Based on the lead structure (2S, 4S)-2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-4-[((4-aminophenyl)thio)methyl]-1,3-dioxolane (azalanstat, QC-1) we have synthesized structural modifications to develop novel and selective HO inhibitors. The structural study of human HO-1 (hHO-1) in complex with a select group of the inhibitors was initiated using X-ray crystallographic techniques.
View Article and Find Full Text PDFHeme oxygenase-1 (HO-1), a member of the heat shock protein family, plays a key role as a sensor and regulator of oxidative stress. Herein, we identify HO-1 as a biomarker and potential therapeutic target for advanced prostate cancer (PCA). Immunohistochemical analysis of prostate tissue using a progression tissue microarray from patients with localized PCA and across several stages of disease progression revealed a significant elevation of HO-1 expression in cancer epithelial cells, but not in surrounding stromal cells, from hormone-refractory PCA (HRPCA) compared with hormone-responsive PCA and benign tissue.
View Article and Find Full Text PDFThe crystal structure of human heme oxygenase-1 (HO-1) in complex with (2R,4S)-2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-4[((5-trifluoromethylpyridin-2-yl)thio)methyl]-1,3-dioxolane (4) reveals a novel, inducible binding mode. Inhibitor 4 coordinates the heme iron, with its chlorophenyl group bound in a distal hydrophobic pocket, as seen in previous structures. However, accommodation of the 5-trifluoromethylpyridin-2-yl group requires a significant shift in the proximal helix, inducing the formation of a hydrophobic pocket.
View Article and Find Full Text PDFSeveral imidazole-dioxolane compounds were synthesized and evaluated as novel inhibitors of heme oxygenase (HO). These compounds, which include a series of substituted thiophenol and substituted phenol derivatives of (2R,4S)-2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-4-[(phenylsulfanyl)methyl]-1,3-dioxolane hydrochloride (3), in addition to smaller functionalized derivatives, continue our structure-activity studies by exploration of the aminothiophenol region ('northeastern region') in our original target structure azalanstat (1). In vitro, most of the compounds in this series were found to be highly potent inhibitors of the stress-induced isozyme HO-1 and the constitutive isozyme HO-2, showing only moderate selectivity for HO-1.
View Article and Find Full Text PDF