T cell activation requires T cell receptor (TCR) engagement, which initiates a series of proximal events including tyrosine phosphorylation of the CD3 and TCRζ chains, recruitment, and activation of the protein tyrosine kinases Lck and ZAP70, followed by recruitment of adapter and signaling proteins. CD28 co-stimulation is also required to generate a functional immune response. Currently we lack a full understanding of the molecular mechanism of CD28 activation.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) T cells have been used to successfully treat various blood cancers, but adverse effects have limited their potential. Here, we developed chimeric adaptor proteins (CAPs) and CAR tyrosine kinases (CAR-TKs) in which the intracellular ζ T cell receptor (TCRζ) chain was replaced with intracellular protein domains to stimulate signaling downstream of the TCRζ chain. CAPs contain adaptor domains and the kinase domain of ZAP70, whereas CAR-TKs contain only ZAP70 domains.
View Article and Find Full Text PDFBackground: One of the major challenges in chimeric antigen receptor (CAR)-T cell therapy for solid tumors is the potential for on-target off-tumor toxicity due to the expression of CAR tumor antigens in essential tissues and organs. Here, we describe a dual CAR NOT gate incorporating an inhibitory CAR (iCAR) recognizing HLA-A*02 ("A2") that enables effective treatment with a potent HER2 activating CAR (aCAR) in the context of A2 loss of heterozygosity (LOH).
Methods: A CAR-T cell screen was conducted to identify inhibitory domains derived from natural immune receptors (iDomains) to be used in a NOT gate, to kill A2 HER2 lung cancer cell lines but spare A2 HER2 lung cancer cell-lines with high specificity.
In all resolved structures of complex I, there exists a tunnel-like Q-chamber for ubiquinone binding and reduction. The entrance to the Q-chamber in ND1 subunit forms a narrow bottleneck, which is rather tight and requires thermal conformational changes for ubiquinone to get in and out of the binding chamber. The substitution of alanine with threonine at the bottleneck (AlaThr MUT), associated with 3460/ND1 mtDNA mutation in human complex I, is implicated in Leber's Hereditary Optic Neuropathy (LHON).
View Article and Find Full Text PDFThe E3 ubiquitin ligase Ube3a is biallelically expressed in neural progenitors and glial cells, suggesting that UBE3A gain-of-function mutations might cause neurodevelopmental disorders irrespective of parent of origin. Here, we engineered a mouse line that harbors an autism-linked UBE3A (T503A in mouse) gain-of-function mutation and evaluated phenotypes in animals that inherited the mutant allele paternally, maternally, or from both parents. We find that paternally and maternally expressed UBE3A results in elevated UBE3A activity in neural progenitors and glial cells.
View Article and Find Full Text PDFThe commonalities and differences in cell-type-specific pathways that lead to Alzheimer disease (AD) and Parkinson disease (PD) remain unknown. Here, we performed a single-nucleus transcriptome comparison of control, AD and PD striata. We describe three astrocyte subpopulations shared across different brain regions and evolutionarily conserved between humans and mice.
View Article and Find Full Text PDFThe increased use of sequencing in medicine has identified millions of coding variants in the human genome. Many of these variants occur in genes associated with neurodevelopmental disorders, but the functional significance of the vast majority of variants remains unknown. The present protocol describes the study of variants for Ube3a, a gene that encodes an E3 ubiquitin ligase linked to both autism and Angelman syndrome.
View Article and Find Full Text PDFThe mechanisms that underlie the extensive phenotypic diversity in genetic disorders are poorly understood. Here, we develop a large-scale assay to characterize the functional valence (gain or loss-of-function) of missense variants identified in UBE3A, the gene whose loss-of-function causes the neurodevelopmental disorder Angelman syndrome. We identify numerous gain-of-function variants including a hyperactivating Q588E mutation that strikingly increases UBE3A activity above wild-type UBE3A levels.
View Article and Find Full Text PDFWe designed variant human TCRs composed of the full-length TCRα/β or extracellular and transmembrane domains of the associated CD3 subunits fused to polypeptides derived from proteins thought to either enhance or inhibit normal T cell function. First, we showed that the C termini of both the TCR α- and β-chains can accommodate specific additional sequences, without abrogating complex formation or acute sensitivity of the receptor. Replacement of ITAMs with ITIM-containing intracellular domains inverted the TCR signal (i.
View Article and Find Full Text PDFCell therapy is poised to play a larger role in medicine, most notably for immuno-oncology. Despite the recent success of CAR-T therapeutics in the treatment of blood tumors and the rapid progress toward improved versions of both CAR- and TCR-Ts, important analytical aspects of preclinical development and manufacturing of engineered T cells remain immature. One limiting factor is the absence of robust multivariate assays to disentangle key parameters related to function of engineered effector cells, especially in the peptide-MHC (pMHC) target realm, the natural ligand for TCRs.
View Article and Find Full Text PDFEngagement of the T cell receptor (TCR) by stimulatory ligand results in the rapid formation of microclusters at sites of T cell activation. Whereas microclusters have been studied extensively using confocal microscopy, the spatial and kinetic relationships of their signaling components have not been well characterized due to limits in image resolution and acquisition speed. Here we show, using TIRF-SIM to examine the organization of microclusters at sub-diffraction resolution, the presence of two spatially distinct domains composed of ZAP70-bound TCR and LAT-associated signaling complex.
View Article and Find Full Text PDFThe relative importance of plasma membrane-localized LAT versus vesicular LAT for microcluster formation and T-cell receptor (TCR) activation is unclear. Here, we show the sequence of events in LAT microcluster formation and vesicle delivery, using lattice light sheet microscopy to image a T cell from the earliest point of activation. A kinetic lag occurs between LAT microcluster formation and vesicular pool recruitment to the synapse.
View Article and Find Full Text PDFImaging heterogeneous cellular structures using single molecule localization microscopy has been hindered by inadequate localization precision and multiplexing ability. Using fluorescent nano-diamond fiducial markers, we describe the drift correction and alignment procedures required to obtain high precision in single molecule localization microscopy. In addition, a new multiplexing strategy, madSTORM, is described in which multiple molecules are targeted in the same cell using sequential binding and elution of fluorescent antibodies.
View Article and Find Full Text PDFUBE3A is a HECT domain E3 ubiquitin ligase whose dysfunction is linked to autism, Angelman syndrome, and cancer. Recently, we characterized a autism-linked UBE3A mutant (UBE3A) that disrupts phosphorylation control of UBE3A activity. Through quantitative proteomics and reporter assays, we found that the UBE3A protein ubiquitinates multiple proteasome subunits, reduces proteasome subunit abundance and activity, stabilizes nuclear β-catenin, and stimulates canonical Wnt signaling more effectively than wild-type UBE3A.
View Article and Find Full Text PDFSingle-molecule localization microscopy (SMLM) comprises methods that produce super-resolution images from molecular locations of single molecules. These techniques mathematically determine the center of a diffraction-limited spot produced by a fluorescent molecule, which represents the most likely location of the molecule. Only a small cohort of well-separated molecules is visualized in a single image, and then many images are obtained from a single sample.
View Article and Find Full Text PDFThe adapter molecule linker for activation of T cells (LAT) plays a crucial role in forming signaling complexes induced by stimulation of the T cell receptor (TCR). These multi-molecular complexes are dynamic structures that activate highly regulated signaling pathways. Previously, we have demonstrated nanoscale structure in LAT-based complexes where the adapter SLP-76 (also known as LCP2) localizes to the periphery of LAT clusters.
View Article and Find Full Text PDFInvestigation of heterogeneous cellular structures using single-molecule localization microscopy has been limited by poorly defined localization accuracy and inadequate multiplexing capacity. Using fluorescent nanodiamonds as fiducial markers, we define and achieve localization precision required for single-molecule accuracy in dSTORM images. Coupled with this advance, our new multiplexing strategy, madSTORM, allows accurate targeting of multiple molecules using sequential binding and elution of fluorescent antibodies.
View Article and Find Full Text PDFActin assembly and inward flow in the plane of the immunological synapse (IS) drives the centralization of T cell receptor microclusters (TCR MCs) and the integrin leukocyte functional antigen 1 (LFA-1). Using structured-illumination microscopy (SIM), we show that actin arcs populating the medial, lamella-like region of the IS arise from linear actin filaments generated by one or more formins present at the IS distal edge. After traversing the outer, Arp2/3-generated, lamellipodia-like region of the IS, these linear filaments are organized by myosin II into antiparallel concentric arcs.
View Article and Find Full Text PDFDeletion of UBE3A causes the neurodevelopmental disorder Angelman syndrome (AS), while duplication or triplication of UBE3A is linked to autism. These genetic findings suggest that the ubiquitin ligase activity of UBE3A must be tightly maintained to promote normal brain development. Here, we found that protein kinase A (PKA) phosphorylates UBE3A in a region outside of the catalytic domain at residue T485 and inhibits UBE3A activity toward itself and other substrates.
View Article and Find Full Text PDFEctonucleotidases are membrane-bound or secreted proteins that hydrolyze extracellular nucleotides. Recently, we identified three ectonucleotidases that hydrolyze extracellular adenosine 5'-monophosphate (AMP) to adenosine in primary somatosensory neurons. Currently, it is unclear which ectonucleotidases hydrolyze ATP and ADP in these neurons.
View Article and Find Full Text PDFOptogenetic control of endogenous signaling can be an important tool for probing cell behavior. Using the photoresponse of the LOV2 domain of Avena sativa phototropin 1, we developed analogues of kinase inhibitors whose activity is light dependent. Inhibitory peptides were appended to the Jα helix, where they potently inhibited kinases in the light but were sterically blocked from kinase interaction in the dark.
View Article and Find Full Text PDFWe describe an approach to selectively activate a kinase in a specific protein complex or at a specific subcellular location within living cells and within minutes. This reveals the effects of specific kinase pathways without time for genetic compensation. The new technique, dubbed rapamycin-regulated targeted activation of pathways (RapRTAP), was used to dissect the role of Src kinase interactions with FAK and p130Cas in cell motility and morphodynamics.
View Article and Find Full Text PDFT cells rapidly reposition their centrosome to the center of the immunological synapse (IS) to drive polarized secretion in the direction of the bound target cell. Using an optical trap for spatial and temporal control over target presentation, we show that centrosome repositioning in Jurkat T cells exhibited kinetically distinct polarization and docking phases and required calcium flux and signaling through both the T cell receptor and integrin to be robust. In "frustrated" conjugates where the centrosome is stuck behind the nucleus, the center of the IS invaginated dramatically to approach the centrosome.
View Article and Find Full Text PDFActin retrograde flow and actomyosin II contraction have both been implicated in the inward movement of T cell receptor (TCR) microclusters and immunological synapse formation, but no study has integrated and quantified their relative contributions. Using Jurkat T cells expressing fluorescent myosin IIA heavy chain and F-tractin-a novel reporter for F-actin-we now provide direct evidence that the distal supramolecular activation cluster (dSMAC) and peripheral supramolecular activation cluster (pSMAC) correspond to lamellipodial (LP) and lamellar (LM) actin networks, respectively, as hypothesized previously. Our images reveal concentric and contracting actomyosin II arcs/rings at the LM/pSMAC.
View Article and Find Full Text PDF