Publications by authors named "Jason Yee"

Article Synopsis
  • The neurohormone oxytocin, known for its role in various physiological functions, operates through its receptor, which has alternative transcripts that could serve different biological purposes.
  • Researchers studied prairie voles, a monogamous rodent model, to explore the presence of these alternative transcripts in their brain and uterine tissues, using advanced genetic techniques.
  • They found seven distinct transcripts, showing that maternal oxytocin influences the expression of these transcripts and highlights the importance of epigenetic regulation during brain development in offspring, which may also impact models for understanding social behaviors in humans.
View Article and Find Full Text PDF

Birth is a critical period for the developing brain, a time when surging hormone levels help prepare the fetal brain for the tremendous physiological changes it must accomplish upon entry into the 'extrauterine world'. A number of obstetrical conditions warrant manipulations of these hormones at the time of birth, but we know little of their possible consequences on the developing brain. One of the most notable birth signaling hormones is oxytocin, which is administered to roughly 50% of laboring women in the United States prior to / during delivery.

View Article and Find Full Text PDF

The concept of flow, a state of complete absorption in an intrinsically rewarding activity, has played a pivotal role in advancing notions of human well-being beyond minimising suffering towards promoting flourishing and thriving. While flow has played a fundamental role in human positive psychology, it has not yet been explored in non-human animals, leaving an enormous void in our understanding of intrinsic motivation in animals. As ethology and related fields keep progressing in uncovering complex cognitive and affective capacities of non-human animals, we propose the time is ripe to translate the concept of flow to animals.

View Article and Find Full Text PDF

Background: The goal of this study was to elucidate the fundamental connectivity-resting-state connectivity-within and between nodes in the olfactory and prosocial (PS) cores, which permits the expression of social monogamy in males; and how differential connectivity accounts for differential expression of prosociality and aggression.

Methods: Using resting-state functional magnetic resonance imaging, we integrated graph theory analysis to compare functional connectivity between two culturally/behaviorally distinct male prairie voles (Microtusochrogaster).

Results: Illinois males display significantly higher levels of prosocial behavior and lower levels of aggression than KI (Kansas dam and Illinois sire) males, which are associated with differences in underlying neural mechanisms and brain microarchitecture.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how brain structure and connectivity differ between prairie voles from Illinois, which are highly prosocial, and first-generation males from Kansas, which exhibit lower prosocial behavior and higher aggression.
  • It was found that Illinois males have higher diffusion rates in brain areas linked to prosocial behavior, while Kansas males show increased diffusion in the brainstem.
  • The findings imply that variations in brain architecture and connectivity may influence social behaviors, making prairie voles a useful model for studying emotional and behavioral regulation.
View Article and Find Full Text PDF

Oxytocin is a pleiotropic, peptide hormone with broad implications for general health, adaptation, development, reproduction, and social behavior. Endogenous oxytocin and stimulation of the oxytocin receptor support patterns of growth, resilience, and healing. Oxytocin can function as a stress-coping molecule, an anti-inflammatory, and an antioxidant, with protective effects especially in the face of adversity or trauma.

View Article and Find Full Text PDF

Positive welfare and related terms such as good welfare, happiness, and a good life are increasingly used in the animal welfare science literature. Overall, they highlight the welfare benefits of providing animals opportunities for positive experiences, beyond the alleviation of suffering. However, the various terms remain loosely defined and are sometimes used interchangeably, resulting in discrepancy.

View Article and Find Full Text PDF

The prairie vole has proven a valuable animal model for the neurobiological study of social monogamy and pair bonding. Previous research has focused almost exclusively on virgin prairie voles forming pair-bonds for the first time - a paradigm with limited relevance to human social behavior. In the present study, we used stud males to assess the impact of repeated pair-bond formation and dissolution on the behaviors and neurobiology relevant to subsequent pair-bond formation.

View Article and Find Full Text PDF

The present study was designed to use blood-oxygen-level dependent (BOLD) imaging to "fingerprint" the change in activity in response to oxycodone (OXY) in drug naïve rats before and after repeated exposure to OXY. It was hypothesized that repeated exposure to OXY would initiate adaptive changes in brain organization that would be reflected in an altered response to opioid exposure. Male rats exposed to OXY repeatedly showed conditioned place preference, evidence of drug-seeking behavior and putative neuroadaptation.

View Article and Find Full Text PDF

The aim of this study was to assess the effects of two doses of Δ -tetrahydrocannabinol (THC, cannabis' main psychoactive agent) and vehicle on blood-oxygen-level dependent (BOLD) activity in drug-naïve, awake rats, in an effort to obtain a THC-specific map of activation in clinically-relevant regions and systems. Intraperitoneal injections of low dose of THC resulted in increased positive and negative BOLD signals compared to vehicle and high dose in areas rich in cannabinoid receptor 1, as well as throughout the pain and hippocampal neural systems. These results offer unique maps of activity, or 'fingerprints', associated with systemic THC administration, allowing for further comparisons with either additional doses or compounds, or between THC administration modalities (i.

View Article and Find Full Text PDF

The 5-HT receptor is a promising target for cognitive disorders, in particular for Alzheimer's disease (AD) and other CNS disorders. The high-affinity and selective 5-HT receptor antagonist idalopirdine (Lu AE58054) is currently in development for mild-moderate AD as adjunct therapy to acetylcholinesterase inhibitors (AChEIs). We studied the effects of idalopirdine alone and in combination with the AChEI donepezil on brain activity using BOLD (Blood Oxygen Level Dependent) functional magnetic resonance imaging (fMRI) in the awake rat.

View Article and Find Full Text PDF

Social factors play a critical role in a panoply of health processes, including, as recently demonstrated, olfaction. Here, we investigated sex-dependent differences in the relationship between social lives and ability to identify odors in a large sample of nationally representative older US adults (n = 3005, National Social Life and Aging Project (NSHAP)). Social life was measured by the number of friends and close relatives as well as frequency of socializing.

View Article and Find Full Text PDF

Prairie voles are socially monogamous rodents that form social bonds similar to those seen in primates. Social behavior investigation in these species, that include studying their breathing regulation, can provide us with an invaluable psychological model to understand social and emotional functions in both animals and humans. There have been several studies associated with the respiratory pattern of these species in the state of fear-induced defense.

View Article and Find Full Text PDF

Blood oxygen level dependent (BOLD) imaging in awake mice was used to identify differences in brain activity between wild-type, and Mu (μ) opioid receptor knock-outs (MuKO) in response to oxycodone (OXY). Using a segmented, annotated MRI mouse atlas and computational analysis, patterns of integrated positive and negative BOLD activity were identified across 122 brain areas. The pattern of positive BOLD showed enhanced activation across the brain in WT mice within 15 min of intraperitoneal administration of 2.

View Article and Find Full Text PDF

The ovarian hormone estrogen has been implicated in schizophrenia symptomatology. Low levels of estrogen are associated with an increase in symptom severity, while exogenous estrogen increases the efficacy of antipsychotic medication, pointing at a possible interaction between estrogen and the dopaminergic system. The aim of this study is to further investigate this interaction in an animal model of some aspects of schizophrenia using awake functional magnetic resonance imaging.

View Article and Find Full Text PDF

The neuropeptide oxytocin (OXT) facilitates prosocial behavior and selective sociality. In the context of stress, OXT also can down-regulate hypothalamic-pituitary-adrenal (HPA) axis activity, leading to consideration of OXT as a potential treatment for many socioaffective disorders. However, the mechanisms through which administration of exogenous OXT modulates social behavior in stressful environmental contexts are not fully understood.

View Article and Find Full Text PDF

A growing body of literature has suggested that intranasal oxytocin (OT) or other systemic routes of administration can alter prosocial behavior, presumably by directly activating OT sensitive neural circuits in the brain. Yet there is no clear evidence that OT given peripherally can cross the blood-brain barrier at levels sufficient to engage the OT receptor. To address this issue we examined changes in blood oxygen level-dependent (BOLD) signal intensity in response to peripheral OT injections (0.

View Article and Find Full Text PDF

Previous studies demonstrate that schizophrenia symptomatology in women is dependent upon estrogen levels. Estrogen has beneficial properties when administered in conjunction with antipsychotics, and estrogen also alters, in rats, dopamine neurotransmission, which is a common target of all antipsychotic medications, suggesting a possible interaction between the two. The aim of the current study was to investigate this possible interaction using functional magnetic resonance imaging in awake, female rats.

View Article and Find Full Text PDF

In the present study, we used functional MRI in awake rats to investigate the pain response that accompanies intradermal injection of capsaicin into the hindpaw. To this end, we used BOLD imaging together with a 3D segmented, annotated rat atlas and computational analysis to identify the integrated neural circuits involved in capsaicin-induced pain. The specificity of the pain response to capsaicin was tested in a transgenic model that contains a biallelic deletion of the gene encoding for the transient receptor potential cation channel subfamily V member 1 (TRPV1).

View Article and Find Full Text PDF

Autonomic responses, including changes in heart rate and respiratory sinus arrhythmia (RSA) can provide indications of emotional reactivity to social stimuli in mammals. We have previously reported that male prairie voles (Microtus ochrogaster) spontaneously care for unfamiliar infants, showing a robust and sustained increase in heart rate in the presence of a pup, thus providing an opportunity to examine the physiology of care-giving in reproductively naïve animals. However, the purpose of such heart rate increases has not been explained by previous efforts.

View Article and Find Full Text PDF

Vocalizations serve as a conspecific social communication system among mammals. Modulation of acoustic features embedded within vocalizations is used by several mammalian species to signal whether it is safe or dangerous to approach conspecific and heterospecific mammals. As described by the Polyvagal Theory, the phylogenetic shift in the evolution of mammals involved an adaptive neuroanatomical link between the neural circuits regulating heart rate and the muscles involved in modulating the acoustic features of vocalizations.

View Article and Find Full Text PDF

The neuropeptide oxytocin has been previously associated with social attachment behaviors in various species. Studies in socially monogamous prairie voles (Microtus ochrogaster) and other species have implicated oxytocin in partner preferences and other social behaviors. In the present study male prairie voles were injected intraperitoneally with either oxytocin or the selective oxytocin antagonist, L-368,899, and were assessed for object preference (for small inanimate toys) 30-min after injection.

View Article and Find Full Text PDF

Oxytocin has been previously associated with social attachment behaviors in various species, however, most studies focused on partner preference in the socially-monogamous prairie vole. In these, oxytocin treatment was shown to promote partner preference, such that females receiving either central or pulsatile peripheral administration would spend more time with a familiar male. This behavioral outcome was blocked by oxytocin receptor antagonist treatment.

View Article and Find Full Text PDF

Blood oxygen level dependent (BOLD) imaging in awake mice was used to identify differences in brain activity between wild-type, HETzQ175, and HOMzQ175 genotypes in response to the odor of almond. The study was designed to see how alterations in the huntingtin gene in a mouse model of Huntington's disease would affect the perception and processing of almond odor, an evolutionarily conserved stimulus with high emotional and motivational valence. Moreover, the mice in this study were "odor naïve," i.

View Article and Find Full Text PDF

Caregiving by nonparents (alloparenting) and fathers is a defining aspect of human social behavior, yet this phenomenon is rare among mammals. Male prairie voles (Microtus ochrogaster) spontaneously exhibit high levels of alloparental care, even in the absence of reproductive experience. In previous studies, exposure to a pup was selectively associated with increased activity in oxytocin and vasopressin neurons along with decreased plasma corticosterone.

View Article and Find Full Text PDF