Background: Unbalanced translocations can cause developmental delay (DD), intellectual disability (ID), growth problems, dysmorphic features, and congenital anomalies. They may arise de novo or may be inherited from a parent carrying a balanced rearrangement. It is estimated that 1/500 people is a balanced translocation carrier.
View Article and Find Full Text PDFBackground: Approximately 4% of the African-American population possess a valine-to-isoleucine (V122I) substitution within the transthyretin protein that results in a tendency for a normally tetrameric protein to dissociate into misfolded, monomeric subunits. These misfolded proteins can then accumulate pathologically and cause an autosomal dominant amyloid cardiomyopathy. Homozygous patients are infrequently documented in case reports, and though there are larger studies among heterozygous patients, there is a lack of studies or reports comparing disease within a family.
View Article and Find Full Text PDFThe PE-Swab direct STR amplification workflow was developed to process low-level "touch DNA" samples. In this workflow, a forensic sample is first collected on a 4-mm PE-Swab (a novel sample collection device); two 2-mm punches containing collected samples are then generated from the PE-Swab and directly amplified for STR typing. Compared to the conventional STR workflow, which involves DNA extraction, purification, and elution volume reduction, the PE-Swab direct STR amplification workflow does not require sample preparation and takes <60 sec before a touch sample is ready for STR amplification.
View Article and Find Full Text PDFForensic Sci Int Genet
November 2014
The effectiveness of a direct quantification assay is essential to the adoption of the combined direct quantification/direct STR workflow. In this paper, the feasibility of using the Quantifiler(®) Trio DNA quantification kit for the direct quantification of forensic casework samples was investigated. Both low-level touch DNA samples and blood samples were collected on PE swabs and quantified directly.
View Article and Find Full Text PDFForensic Sci Int Genet
July 2014
The current short tandem repeat (STR) typing workflow for forensic casework samples involves sample collection, sample screening, DNA extraction, DNA qPCR quantification and STR amplification. Although very effective and powerful, this workflow still has room for improvements. For example, the screening assays in practice do not provide DNA related information and also do not work with touch DNA samples, which make up of the majority of the property crime samples.
View Article and Find Full Text PDFCurrent single-locus-based analyses and candidate disease gene prediction methodologies used in genome-wide association studies (GWAS) do not capitalize on the wealth of the underlying genetic data, nor functional data available from molecular biology. Here, we analyzed GWAS data from the Wellcome Trust Case Control Consortium (WTCCC) on coronary artery disease (CAD). Gentrepid uses a multiple-locus-based approach, drawing on protein pathway- or domain-based data to make predictions.
View Article and Find Full Text PDFBackground: Candidate disease gene prediction is a rapidly developing area of bioinformatics research with the potential to deliver great benefits to human health. As experimental studies detecting associations between genetic intervals and disease proliferate, better bioinformatic techniques that can expand and exploit the data are required.
Description: Gentrepid is a web resource which predicts and prioritizes candidate disease genes for both Mendelian and complex diseases.
The AutoMate Express™ Forensic DNA Extraction System was developed for automatic isolation of DNA from a variety of forensic biological samples. The performance of the system was investigated using a wide range of biological samples. Depending on the sample type, either PrepFiler™ lysis buffer or PrepFiler BTA™ lysis buffer was used to lyse the samples.
View Article and Find Full Text PDFBackground: Genome-wide association studies (GWAS) aim to identify causal variants and genes for complex disease by independently testing a large number of SNP markers for disease association. Although genes have been implicated in these studies, few utilise the multiple-hit model of complex disease to identify causal candidates. A major benefit of multi-locus comparison is that it compensates for some shortcomings of current statistical analyses that test the frequency of each SNP in isolation for the phenotype population versus control.
View Article and Find Full Text PDFThe embryonic stem cell-specific cell cycle-regulating (ESCC) family of microRNAs (miRNAs) enhances reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells. Here we show that the human ESCC miRNA orthologs hsa-miR-302b and hsa-miR-372 promote human somatic cell reprogramming. Furthermore, these miRNAs repress multiple target genes, with downregulation of individual targets only partially recapitulating the total miRNA effects.
View Article and Find Full Text PDFDisulfides are conventionally viewed as structurally stabilizing elements in proteins but emerging evidence suggests two disulfide subproteomes exist. One group mediates the well known role of structural stabilization. A second redox-active group are best known for their catalytic functions but are increasingly being recognized for their roles in regulation of protein function.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) remains refractory to conventional therapy. CD133+ GBM cells have been recently isolated and characterized as chemo-/radio-resistant tumor-initiating cells and are hypothesized to be responsible for post-treatment recurrence. In order to explore the molecular properties of tumorigenic CD133+ GBM cells that resist treatment, we isolated CD133+ GBM cells from tumors that are recurrent and have previously received chemo-/radio-therapy.
View Article and Find Full Text PDFBackground: Automated candidate gene prediction systems allow geneticists to hone in on disease genes more rapidly by identifying the most probable candidate genes linked to the disease phenotypes under investigation. Here we assessed the ability of eight different candidate gene prediction systems to predict disease genes in intervals previously associated with type 2 diabetes by benchmarking their performance against genes implicated by recent genome-wide association studies.
Results: Using a search space of 9556 genes, all but one of the systems pruned the genome in favour of genes associated with moderate to highly significant SNPs.
Linkage analysis is a successful procedure to associate diseases with specific genomic regions. These regions are often large, containing hundreds of genes, which make experimental methods employed to identify the disease gene arduous and expensive. We present two methods to prioritize candidates for further experimental study: Common Pathway Scanning (CPS) and Common Module Profiling (CMP).
View Article and Find Full Text PDF