Publications by authors named "Jason Westerbeck"

Background: During the 2017-18 influenza season in the USA, there was a high incidence of influenza illness and mortality. However, no apparent antigenic change was identified in the dominant H3N2 viruses, and the severity of the season could not be solely attributed to a vaccine mismatch. We aimed to investigate whether the altered virus properties resulting from gene reassortment were underlying causes of the increased case number and disease severity associated with the 2017-18 influenza season.

View Article and Find Full Text PDF
Article Synopsis
  • RNA vaccines have shown effectiveness against SARS-CoV-2, and a new two-dose self-amplifying mRNA vaccine has been tested for immunity, safety, and distribution in preclinical models.
  • In mice, the vaccine generated a strong immune response, neutralizing both the original Wuhan strain and several variants (Alpha, Beta, Delta).
  • It demonstrated a good safety profile in rats and hamsters, effectively reducing viral loads and protecting against COVID-19 without causing harmful side effects, leading to its advancement to phase 1 clinical trials.
View Article and Find Full Text PDF

Healthcare institutions with mandatory influenza vaccination policies have over 90% vaccination rates among healthcare workers (HCWs) resulting in a population that has received the influenza vaccine in many, consecutive years. This study explored the impact of sex and other host factors in pre- and post-vaccination neutralizing antibody (nAb) titers and seroconversion against the H1N1 and H3N2 influenza A viruses (IAVs) among HCWs enrolled into a cross-sectional serosurvey during the annual Johns Hopkins Hospital employee vaccination campaign in the 2017-18 and 2018-19 seasons. The study enrolled 111 participants (male = 38, female = 73) in 2017-18 and 163 (male = 44, female = 119) in 2018-19.

View Article and Find Full Text PDF

Background: An antigenic mismatch between the vaccine and circulating H3N2 strains was hypothesized to contribute to the severity of the 2017-2018 season in North America.

Methods: Serum and nasal washes were collected from influenza positive and negative patients during the 2017-2018 season to determine neutralizing antibody (nAb) titers and for influenza virus sequencing, respectively.

Results: The circulating and vaccine H3N2 virus strains were different clades, with the vaccine strain being clade 3C.

View Article and Find Full Text PDF

Coronaviruses (CoVs) assemble by budding into the lumen of the early Golgi complex prior to exocytosis. The small CoV envelope (E) protein plays roles in assembly, virion release, and pathogenesis. CoV E has a single hydrophobic domain (HD), is targeted to Golgi membranes, and has cation channel activity The E protein from avian infectious bronchitis virus (IBV) has dramatic effects on the secretory system, which require residues in the HD.

View Article and Find Full Text PDF

Unlabelled: Coronaviruses (CoVs) assemble by budding into the lumen of the early Golgi complex prior to exocytosis. The small CoV envelope (E) protein plays roles in assembly, virion release, and pathogenesis. CoV E has a single hydrophobic domain (HD), is targeted to Golgi complex membranes, and has cation channel activity in vitro.

View Article and Find Full Text PDF

Emerin is a conserved membrane component of nuclear lamina structure. Here, we report an advance in understanding the molecular basis of emerin function: intermolecular emerin-emerin association. There were two modes: one mediated by association of residues 170-220 in one emerin molecule to residues 170-220 in another, and the second involving residues 170-220 and 1-132.

View Article and Find Full Text PDF

The Slx5/Slx8 heterodimer constitutes a SUMO-targeted ubiquitin ligase (STUbL) with an important role in SUMO-targeted degradation and SUMO-dependent signaling. This STUbL relies on SUMO-interacting motifs in Slx5 to aid in substrate targeting and carboxy-terminal RING domains in both Slx5 and Slx8 for substrate ubiquitylation. In budding yeast cells, Slx5 resides in the nucleus, forms distinct foci, and can associate with double-stranded DNA breaks.

View Article and Find Full Text PDF

Background: In the yeast Saccharomyces cerevisiae, the essential small ubiquitin-like modifier (SUMO) protease Ulp1 is responsible for both removing SUMO/Smt3 from specific target proteins and for processing precursor SUMO into its conjugation-competent form. Ulp1 localizes predominantly to nuclear pore complexes but has also been shown to deconjugate sumoylated septins at the bud-neck of dividing cells. How Ulp1 is directed to bud-neck localized septins and other cytoplasmic deconjugation targets is not well understood.

View Article and Find Full Text PDF