Importance: Colorectal polyps are common, and their histopathologic classification is used in the planning of follow-up surveillance. Substantial variation has been observed in pathologists' classification of colorectal polyps, and improved assessment by pathologists may be associated with reduced subsequent underuse and overuse of colonoscopy.
Objective: To compare standard microscopic assessment with an artificial intelligence (AI)-augmented digital system that annotates regions of interest within digitized polyp tissue and predicts polyp type using a deep learning model to assist pathologists in colorectal polyp classification.
AMIA Jt Summits Transl Sci Proc
May 2020
Identifying patient characteristics that influence the rate of colorectal polyp recurrence can provide important insights into which patients are at higher risk for recurrence. We used natural language processing to extract polyp morphological characteristics from 953 polyp-presenting patients' electronic medical records. We used subsequent colonoscopy reports to examine how the time to polyp recurrence (731 patients experienced recurrence) is influenced by these characteristics as well as anthropometric features using Kaplan-Meier curves, Cox proportional hazards modeling, and random survival forest models.
View Article and Find Full Text PDFImportance: Histologic classification of colorectal polyps plays a critical role in screening for colorectal cancer and care of affected patients. An accurate and automated algorithm for the classification of colorectal polyps on digitized histopathologic slides could benefit practitioners and patients.
Objective: To evaluate the performance and generalizability of a deep neural network for colorectal polyp classification on histopathologic slide images using a multi-institutional data set.
Context: Celiac disease (CD) prevalence and diagnosis have increased substantially in recent years. The current gold standard for CD confirmation is visual examination of duodenal mucosal biopsies. An accurate computer-aided biopsy analysis system using deep learning can help pathologists diagnose CD more efficiently.
View Article and Find Full Text PDFClassification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often challenging due to the heterogeneous nature of lung adenocarcinoma and the subjective criteria for evaluation. In this study, we propose a deep learning model that automatically classifies the histologic patterns of lung adenocarcinoma on surgical resection slides.
View Article and Find Full Text PDFBackground: The Paris System for Urine Cytopathology (the Paris System) has succeeded in making the analysis of liquid-based urine preparations more reproducible. Any algorithm seeking to automate this system must accurately estimate the nuclear-to-cytoplasmic (N:C) ratio and produce a qualitative "atypia score." The authors propose a hybrid deep-learning and morphometric model that reliably automates the Paris System.
View Article and Find Full Text PDF