Publications by authors named "Jason W Sohn"

Purpose: Identifying the target region is critical for successfully treating ventricular tachycardia (VT) with single fraction stereotactic arrhythmia radioablation (STAR). We report the feasibility of target definition based on direct co-registration of electroanatomic maps (EAM) and radioablation planning images.

Materials And Methods: The EAM consists of 3D cardiac anatomy representation with electrical activity at endocardium and is acquired by a cardiac electrophysiologist (CEP) during electrophysiology study.

View Article and Find Full Text PDF

Purpose: To develop a volume-independent conformity metric called the Gaussian Weighted Conformity Index (GWCI) to evaluate stereotactic radiosurgery/radiotherapy (SRS/SRT) plans for small brain tumors.

Methods: A signed bi-directional local distance (BLD) between the prescription isodose line and the target contour is determined for each point along the tumor contour (positive distance represents under-coverage). A similarity score function (SF) is derived from Gaussian function, penalizing under- and over-coverage at each point by assigning standard deviations of the Gaussian function.

View Article and Find Full Text PDF

To test the hypothesis that dynamic conformal arc therapy (DCAT) in Monaco, compared with volumetric modulated arc therapy (VMAT), maintains plan quality with higher delivery efficiency for lung stereotactic body radiotherapy (SBRT) and to investigate dosimetric benefits of DCAT with active breath-hold (DCAT+ABH), compared with free-breathing (DCAT+FB) for varying tumor sizes and motions. Fifty DCAT plans were used for lung SBRT. Randomly selected 17 DCAT plans were evaluated with respect to the retrospectively generated volumetric modulated arc therapy (VMAT) plans.

View Article and Find Full Text PDF
Article Synopsis
  • - The integration of adaptive radiation therapy (ART) in clinical practice allows for real-time adjustments to treatment plans, aiming to reduce side effects while adjusting doses for targeted areas and protecting surrounding organs.
  • - While ART presents significant benefits, it also complicates the radiation therapy process, introducing potential uncertainties that necessitate careful workflow management and quality assurance measures.
  • - The review discusses current ART workflows, technological challenges (like image quality and dose accumulation), and provides recommendations for personnel efficiency, along with examples to help shape future clinical trials based on established protocols.
View Article and Find Full Text PDF

Purpose: To reduce patient and procedure identification errors by human interactions in radiotherapy delivery and surgery, a Biometric Automated Patient and Procedure Identification System (BAPPIS) was developed. BAPPIS is a patient identification and treatment procedure verification system using fingerprints.

Methods: The system was developed using C++, the Microsoft Foundation Class Library, the Oracle database system, and a fingerprint scanner.

View Article and Find Full Text PDF

Purpose: To assess stereotactic radiotherapy (SRT)/stereotactic body radiotherapy (SBRT) practices by polling clinics participating in multi-institutional clinical trials.

Methods: The NRG Oncology Medical Physics Subcommittee distributed a survey consisting of 23 questions, which covered general technologies, policies, and procedures used in the Radiation Oncology field for the delivery of SRT/SBRT (9 questions), and site-specific questions for brain SRT, lung SBRT, and prostate SBRT (14 questions). Surveys were distributed to 1,996 radiotherapy institutions included on the membership rosters of the five National Clinical Trials Network (NCTN) groups.

View Article and Find Full Text PDF

Background: Necrotic foci with surrounding hypoxic cellular pseudopalisades and microvascular hyperplasia are histological features found in glioblastoma (GBM). We have previously shown that monocarboxylate transporter 4 (MCT4) is highly expressed in necrotic/hypoxic regions in GBM and that increased levels of MCT4 are associated with worse clinical outcomes.

Methods: A combined transcriptomics and metabolomics analysis was performed to study the effects of MCT4 depletion in hypoxic GBM neurospheres.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most malignant primary brain tumor with a median survival of approximately 14 months. Despite aggressive treatment of surgical resection, chemotherapy and radiation therapy, only 3-5% of GBM patients survive more than 3 years. Contributing to this poor therapeutic response, it is believed that GBM contains both intrinsic and acquired mechanisms of resistance, including resistance to radiation therapy.

View Article and Find Full Text PDF

Radiomics is a fast-growing research area based on converting standard-of-care imaging into quantitative minable data and building subsequent predictive models to personalize treatment. Radiomics has been proposed as a study objective in clinical trial concepts and a potential biomarker for stratifying patients across interventional treatment arms. In recognizing the growing importance of radiomics in oncology, a group of medical physicists and clinicians from NRG Oncology reviewed the current status of the field and identified critical issues, providing a general assessment and early recommendations for incorporation in oncology studies.

View Article and Find Full Text PDF

Leksell GammaPlan was specifically designed for Gamma Knife (GK) radiosurgery planning, but it has limited accuracy for estimating the dose distribution in inhomogeneous areas, such as the embolization of arteriovenous malformations. We aimed to develop an independent patient dose validation system based on a patient-specific model, constructed using a DICOM-RT interface and the Geant4 toolkit. Leksell Gamma Knife Perfexion was designed in Geant4.

View Article and Find Full Text PDF

Purpose: A survey was created by NRG to assess a medical physicists' percent full time equivalent (FTE) contribution to multi-institutional clinical trials. A 2012 American Society for Radiation Oncology report, "Safety Is No Accident," quantified medical physics staffing contributions in FTE factors for clinical departments. No quantification of FTE effort associated with clinical trials was included.

View Article and Find Full Text PDF

Development and comparison of spine-shaped phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet has been purposed to utilize in patient-specific quality assurance (QA) of stereotactic body radiation treatment. The developed 3D-printed spine QA phantom consisted of an acrylic body phantom and a 3D-printed spine shaped object. DLP and Polyjet 3D printers using a high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images.

View Article and Find Full Text PDF

Detailed Monte Carlo (MC) modeling of the Leksell Gamma Knife (GK) Perfexion (PFX) collimator system is the only accurate ab initio approach appearing in the literature. As a different approach, in this work, we present a MC model based on film measurement. By adjusting the model parameters and fine-tuning the derived fluence map for each individual source to match the manufacturer's ring output factors, we created a reasonable virtual source model for MC simulations to verify treatment planning dose for the GK PFX radiosurgery system.

View Article and Find Full Text PDF

The purpose of this research is to establish a process of irradiating mice using the Gamma Knife as a versatile system for small animal irradiation and to validate accurate intracranial and extracranial dose delivery using this system. A stereotactic immobilization device was developed for small animals for the Gamma Knife head frame allowing for isocentric dose delivery. Intercranial positional reproducibility of a reference point from a primary reference animal was verified on an additional mouse.

View Article and Find Full Text PDF

Purpose: A quantitative and objective metric, the medical similarity index (MSI), has been developed for evaluating the accuracy of a medical image segmentation relative to a reference segmentation. The MSI uses the medical consideration function (MCF) as its basis.

Methods: Currently, no indices provide quantitative evaluations of segmentation accuracy with medical considerations.

View Article and Find Full Text PDF

Purpose: The aim of this study is to investigate the use of mixture of BaSO4 and biodegradable polymer as an injectable nonmetallic fiducial marker to reduce artifacts in x-ray images, decrease the absorbed dose distortion in proton therapy, and replace permanent metal markers.

Methods: Two samples were made with 90 wt. % polymer phosphate buffer saline (PBS) and 10 wt.

View Article and Find Full Text PDF

Extra-CNS metastasis from glioblastoma (ECMGBM) is an emerging but little known clinical entity. We review pre-clinical and translational publications assessing the ability of GBM to spread locally and outside the CNS. Reported cases demonstrating ECMGBM are reviewed providing a summary of presentations for the entity.

View Article and Find Full Text PDF

Stereotactic body radiation therapy (SBRT) is an emerging technology for the treatment of spinal metastases, although the dosimetric impact of the calculation method on spinal dose distribution is unknown. This study attempts to determine whether CyberKnife (CK)-based SBRT using a Ray Tracing (RyTc) algorithm is comparable dosimetrically to that of Monte Carlo (MC) for thoracic spinal lesions. Our institutional CK-based SBRT database for thoracic spinal lesions was queried and a cohort was generated.

View Article and Find Full Text PDF

In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient's 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations.

View Article and Find Full Text PDF

Purpose: To quantify variations in target and normal structure contouring and evaluate dosimetric impact of these variations in non-small cell lung cancer (NSCLC) cases. To study whether providing an atlas can reduce potential variation.

Methods And Materials: Three NSCLC cases were distributed sequentially to multiple institutions for contouring and radiation therapy planning.

View Article and Find Full Text PDF

This article proposes quantitative analysis tools and digital phantoms to quantify intrinsic errors of deformable image registration (DIR) systems and establish quality assurance (QA) procedures for clinical use of DIR systems utilizing local and global error analysis methods with clinically realistic digital image phantoms. Landmark-based image registration verifications are suitable only for images with significant feature points. To address this shortfall, we adapted a deformation vector field (DVF) comparison approach with new analysis techniques to quantify the results.

View Article and Find Full Text PDF

Stereotactic body radiotherapy (SBRT) has been used extensively in patients with lung, liver and spinal tumors, and the treatment outcomes are very favorable. For certain conditions such as medically inoperable stage I non-small-cell lung cancer, liver and lung oligometastases, primary liver cancer and spinal metastases, SBRT is regarded as one of the standard therapies. In the recent years, the use of SBRT has been extended to other disease conditions and sites such as recurrent head and neck cancer, renal cell carcinoma, prostate cancer, adrenal metastasis, pancreatic cancer, gynecological malignancies, spinal cord compression, breast cancer, and stage II-III non-small-cell lung cancer.

View Article and Find Full Text PDF

Purpose: Establish and validate a process of accurately irradiating small animals using the CyberKnife G4 System (version 8.5) with treatment plans designed to irradiate a hemisphere of a mouse brain based on microCT scanner images.

Methods: These experiments consisted of four parts: (1) building a mouse phantom for intensity modulated radiotherapy (IMRT) quality assurance (QA), (2) proving usability of a microCT for treatment planning, (3) fabricating a small animal positioning system for use with the CyberKnife's image guided radiotherapy (IGRT) system, and (4)in vivo verification of targeting accuracy.

View Article and Find Full Text PDF

Purpose: To accurately quantify the local difference between two contour surfaces in two- or three-dimensional space, a new, robust point-to-surface distance measure is developed.

Methods: To evaluate and visualize the local surface differences, point-to-surface distance measures have been utilized. However, previously well-known point-to-surface distance measures have critical shortfalls.

View Article and Find Full Text PDF

Composite plans created from different image sets are generated through Deformable Image Registration (DIR) and present a challenge in accurately presenting uncertainties, which vary with anatomy. Our effort focuses on the application of Fuzzy Set theory to provide an accurate dose representation of such a composite treatment plan. The accuracy of the DIR is generally verified through geometrical visual checks, including the confirmation of the corresponding anatomies with edge features, such as bone or organ boundaries.

View Article and Find Full Text PDF