Publications by authors named "Jason W O'Neill"

Infarct expansion can occur after myocardial infarction (MI), which leads to adverse left ventricular (LV) remodeling and failure. An imbalance between matrix metalloproteinase (MMP) induction and tissue inhibitors of MMPs (TIMPs) can accelerate this process. Past studies have shown different biologic effects of TIMP-3, which may depend upon specific domains within the TIMP-3 molecule.

View Article and Find Full Text PDF

Tissue Inhibitor of Metalloproteinase 3 (TIMP3) is a secreted protein that has a great utility to inhibit elevated metalloproteinase (MMP) activity in injured tissues including infarcted cardiac tissue, inflamed vessels, and joint cartilages. An imbalance between TIMP3 and active MMP levels in the local tissue area may cause worsening of disease progression. To counter balance elevated MMP levels, exogenous administration of TIMP3 appeared to be beneficial in preclinical studies.

View Article and Find Full Text PDF

Prostaglandin D2 synthase (PGDS) catalyzes the isomerization of prostaglandin H2 (PGH2) to prostaglandin D2 (PGD2). PGD2 produced by hematopoietic prostaglandin D2 synthase (H-PGDS) in mast cells and Th2 cells is proposed to be a mediator of allergic and inflammatory responses. Consequently, inhibitors of H-PGDS represent potential therapeutic agents for the treatment of inflammatory diseases such as asthma.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADC) rely on the target-binding specificity of an antibody to selectively deliver potent drugs to cancer cells. IgG antibody half-life is regulated by neonatal Fc receptor (FcRn) binding. Histidine 435 of human IgG was mutated to alanine (H435A) to explore the effect of FcRn binding on the pharmacokinetics, efficacy, and tolerability of two separate maytansine-based ADC pairs with noncleavable linkers, (c-DM1 and c-H435A-DM1) and (7v-Cys-may and 7v-H435A-Cys-may).

View Article and Find Full Text PDF

Antibody-drug conjugates (ADC) target cytotoxic drugs to antigen-positive cells for treating cancer. After internalization, ADCs with noncleavable linkers are catabolized to amino acid-linker-warheads within the lysosome, which then enter the cytoplasm by an unknown mechanism. We hypothesized that a lysosomal transporter was responsible for delivering noncleavable ADC catabolites into the cytoplasm.

View Article and Find Full Text PDF

Death receptor agonist therapies have exhibited limited clinical benefit to date. Investigations into why Apo2L/TRAIL and AMG 655 preclinical data were not predictive of clinical response revealed that coadministration of Apo2L/TRAIL with AMG 655 leads to increased antitumor activity in vitro and in vivo. The combination of Apo2L/TRAIL and AMG 655 results in enhanced signaling and can sensitize Apo2L/TRAIL-resistant cells.

View Article and Find Full Text PDF

An imbalance between matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) contributes to the left ventricle (LV) remodeling that occurs after myocardial infarction (MI). However, translation of these observations into a clinically relevant, therapeutic strategy remains to be established. The present study investigated targeted TIMP augmentation through regional injection of a degradable hyaluronic acid hydrogel containing recombinant TIMP-3 (rTIMP-3) in a large animal model.

View Article and Find Full Text PDF

The expression of proteins which do not express well on their own can be enhanced by linking them to human serum albumin (HSA) or antibody crystallizable fragment (Fc). The constructs shown here are designed to secrete the proteins after transient transfection of mammalian cell lines. The fusion partners are appended to the N-terminus of the proteins and contain a linker designed to be proteolytically cleaved.

View Article and Find Full Text PDF

The expression levels of five secreted target interleukins (IL-11, 15, 17B, 32, and IL23 p19 subunit) were tested with three different fusion partners in 2936E cells. When fused to the N-terminus, human serum albumin (HSA) was found to enhance the expression of both IL-17B and IL-15, cytokines which did not express at measurable levels on their own. Although the crystallizable fragment of an antibody (Fc) was also an effective fusion partner for IL-17B, Fc did not increase expression of IL-15.

View Article and Find Full Text PDF

Dimeric interactions among anti- and pro-apoptotic members of the BCL-2 protein family are dynamically regulated and intimately involved in survival and death functions. We report the structure of a BCL-X(L) homodimers a 3D-domain swapped dimer (3DDS). The X-ray crystal structure demonstrates the mutual exchange of carboxy-terminal regions including BH2 (Bcl-2 homology 2) between monomer subunits, with the hinge region occurring at the hairpin turn between the fifth and sixth alpha helices.

View Article and Find Full Text PDF

Enforced expression of the antiapoptotic Bcl-2 family protein Mcl-1 promotes lymphomagenesis in the mouse; however, the functional role of Mcl-1 in human B-cell lymphoma remains unclear. We demonstrate that Mcl-1 is widely expressed in malignant B-cells, and high-level expression of Mcl-1 is required for B-lymphoma cell survival, since transfection of Mcl-1-specific antisense oligodeoxynucleotides was sufficient to promote apoptosis in Akata6 lymphoma cells. Mcl-1 was efficiently cleaved by caspases at evolutionarily conserved aspartic acid residues in vitro, and during cisplatin-induced apoptosis in B-lymphoma cell lines and spontaneous apoptosis of primary malignant B-cells.

View Article and Find Full Text PDF

Cells expressing high levels of the BCL-X(L) anti-apoptotic protein are preferentially killed by the mitochondrial inhibitor antimycin A (AA). Computational modeling predicts a binding site for AA in the extended hydrophobic groove on BCL-X(L), previously identified as an interface for dimerization to BAX and related proapoptotic proteins. Here, we identify BCL-X(L) hydrophobic groove mutants with normal cellular anti-apoptotic function but suppressed sensitivity to AA.

View Article and Find Full Text PDF

The Bcl-2 family of proteins provide the most unambiguous link between mitochondrial functions and apoptosis, as their only (or principal) functions appear to be as regulators of this cell death pathway. Rational drug design to manipulate the functions of these proteins has been hampered by the lack of a clear understanding of a biochemical or molecular function, with disruption of intra-family protein-protein interactions as the only known, but daunting, objective. There has been substantial progress in this task using molecular modeling and drug leads.

View Article and Find Full Text PDF

The rational design of loops and turns is a key step towards creating proteins with new functions. We used a computational design procedure to create new backbone conformations in the second turn of protein L. The Protein Data Bank was searched for alternative turn conformations, and sequences optimal for these turns in the context of protein L were identified using a Monte Carlo search procedure and an energy function that favors close packing.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionm0prg2osuhkbs8uath2e1ebo7rn82nlj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once