We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters. In cyanobacteria, long-chain acyl-ACPs can be reduced to fatty aldehydes, and then decarbonylated to alkanes. We discovered a cyanobacteria class-3 aldehyde-dehydrogenase, AldE, that was necessary and sufficient to instead oxidize fatty aldehyde precursors into fatty acids.
View Article and Find Full Text PDFHigh levels of the intracellular signalling molecule cyclic diguanylate (c-di-GMP) supress motility and activate exopolysaccharide (EPS) production in a variety of bacterial species. In many bacteria part of the effect of c-di-GMP is on gene expression, but the mechanism involved is not known for any species. We have identified the protein FleQ as a c-di-GMP-responsive transcriptional regulator in Pseudomonas aeruginosa.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2005
Pseudomonas aeruginosa causes chronic biofilm infections, and its ability to attach to surfaces and other cells is important for biofilm formation and maintenance. Mutations in a gene called wspF, part of a putative chemosensory signal-transduction operon, have been shown to result in cell aggregation and altered colony morphology. The WspF phenotypes depend on the presence of WspR, which is a member of a family of signal transduction proteins known as response regulators.
View Article and Find Full Text PDFA glutathione (GSH)-dependent pathway is used for formaldehyde metabolism by a wide variety of prokaryotes and eukaryotes. In this pathway, S-hydroxymethylglutathione, produced by the reaction of formaldehyde with the thiolate moiety of glutathione, is the substrate for a GSH-dependent formaldehyde dehydrogenase (GSH-FDH). While expression of GSH-FDH often increases in the presence of metabolic or exogenous sources of formaldehyde, little is known about the factors that regulate this response.
View Article and Find Full Text PDFRhodobacter sphaeroides 2.4.1 is a facultative photoheterotrophic bacterium with tremendous metabolic diversity, which has significantly contributed to our understanding of the molecular genetics of photosynthesis, photoheterotrophy, nitrogen fixation, hydrogen metabolism, carbon dioxide fixation, taxis, and tetrapyrrole biosynthesis.
View Article and Find Full Text PDFThe presence of a glutathione-dependent pathway for formaldehyde oxidation in the facultative phototroph Rhodobacter sphaeroides has allowed the identification of gene products that contribute to formaldehyde metabolism. Mutants lacking the glutathione-dependent formaldehyde dehydrogenase (GSH-FDH) are sensitive to metabolic sources of formaldehyde, like methanol. This growth phenotype is correlated with a defect in formaldehyde oxidation.
View Article and Find Full Text PDF