Publications by authors named "Jason W Callahan"

Purpose: Functional lung mapping from Ga-ventilation/perfusion (V/Q) PET/CT, which has been shown to correlate with pulmonary function tests (PFTs), may be beneficial in a number of clinical applications where sparing regions of high lung function is of interest. Regions of clumping in the proximal airways in patients with airways disease can result in areas of focal intense activity and artefact in ventilation imaging. These artefacts may even shine through to subsequent perfusion images and create a challenge for quantitative analysis of PET imaging.

View Article and Find Full Text PDF

Purpose: Inflammatory FDG uptake in the lung (PET-pneumonitis) following curative-intent radiotherapy (RT)/chemo-RT (CRT) in non-small cell lung cancer (NSCLC) can pose a challenge in FDG-PET/CT response assessment. The aim of this study is to describe different patterns of PET-pneumonitis to guide the interpretation of FDG-PET/CT and investigate its association with tumor response and overall survival (OS).

Methods: Retrospective analysis was performed on 87 NSCLC patients in three prospective trials who were treated with radical RT (n = 7) or CRT (n = 80), with baseline and post-treatment FDG-PET/CT.

View Article and Find Full Text PDF

The optimal methodology for defining response with F-FDG PET after curative-intent chemoradiation for non-small cell lung cancer (NSCLC) is unknown. We compared survival outcomes according to the criteria of the European Organization for Research and Treatment of Cancer (EORTC), PERCIST 1.0, the Peter Mac metabolic visual criteria, and the Deauville criteria, respectively.

View Article and Find Full Text PDF

Introduction: Lung tumor delineation is frequently performed using 3D positron emission tomography (PET)/computed tomography (CT), particularly in the radiotherapy treatment planning position, by generating an internal target volume (ITV) from the slow acquisition PET. We investigate the dosimetric consequences of stereotactic ablative body radiotherapy (SABR) planning on 3D PET/CT in comparison with gated (4D) PET/CT.

Methods: In a prospective clinical trial, patients with lung metastases were prescribed 26 Gy single-fraction SABR to the covering isodose.

View Article and Find Full Text PDF

Background: Response assessment after stereotactic ablative body radiotherapy (SABR) in lung can be confounded by radiation-induced inflammation, fibrosis and subsequent alteration of tumour motion. The purpose of this prospective pilot study was to evaluate the utility of four-dimensional (4D) FDG-PET/CT for post-SABR tumour and normal lung response assessment in pulmonary oligometastases.

Material And Methods: Patients enrolled from February 2010 to December 2011 in this prospective ethics approved study had 1-2 pulmonary metastases on staging FDG-PET.

View Article and Find Full Text PDF

Purpose: Given that proliferating hematopoietic stem cells are especially radiosensitive, the bone marrow is a potential organ at risk, particularly with the use of concurrent chemotherapy and radiotherapy. Existing data on bone marrow distribution have been determined from the weight and visual appearance of the marrow in cadavers. 18F-fluoro-L-deoxythymidine concentrates in bone marrow, and we used its intensity on positron emission tomography imaging to quantify the location of the proliferating bone marrow.

View Article and Find Full Text PDF