Unlabelled: The hepatitis C virus NS5A protein is tethered to cellular membranes via an amphipathic amino-terminal helix that is inserted in-plane into the outer endoplasmic reticulum (ER)-derived membrane leaflet. The charged face of the helix faces the cytoplasm and may contribute to interactions involved in replicase assembly and function. Using an aggressive charge flip mutagenesis strategy, we identified a number of essential residues for replication on the charged face of the NS5A anchor and identified a double charge face mutant that is lethal for RNA replication but generates suppressor mutations in the carboxy-terminal helix of the NS4B protein.
View Article and Find Full Text PDFHepatitis C virus (HCV) is a significant pathogen, infecting some 170 million people worldwide. Persistent virus infection often leads to cirrhosis and liver cancer. In the infected cell many RNA directed processes must occur to maintain and spread infection.
View Article and Find Full Text PDFThe NS5A protein of hepatitis C virus (HCV) plays an important but undefined role in viral RNA replication. NS5A has been proposed to be a three-domain protein, and the crystal structure of the well-conserved amino-terminal domain I has been determined. The remaining two domains of NS5A, designated domains II and III, and their corresponding interdomain regions are poorly understood.
View Article and Find Full Text PDFThe classical recessive mouse mutant, Purkinje cell degeneration (pcd), exhibits adult-onset degeneration of cerebellar Purkinje neurons, retinal photoreceptors, olfactory bulb mitral neurons, and selected thalamic neurons, and has defective spermatogenesis. Here we identify Nna1 as the gene mutated in the original pcd and two additional pcd alleles (pcd2J and pcd3J). Nna1 encodes a putative nuclear protein containing a zinc carboxypeptidase domain initially identified by its induction in spinal motor neurons during axonal regeneration.
View Article and Find Full Text PDF