The sleep-promoting ventrolateral preoptic nucleus (VLPO) shares reciprocal inhibitory inputs with wake-active neuronal nuclei, including the locus ceruleus. Electrophysiologically, sleep-promoting neurons in the VLPO are directly depolarized by the general anesthetic isoflurane and hyperpolarized by norepinephrine, a wake-promoting neurotransmitter. However, the integration of these competing influences on the VLPO, a sleep- and anesthetic-active structure, has yet to be evaluated in either brain slices in vitro or the intact organism.
View Article and Find Full Text PDFOne desirable endpoint of general anesthesia is the state of unconsciousness, also known as hypnosis. Defining the hypnotic state in animals is less straightforward than it is in human patients. A widely used behavioral surrogate for hypnosis in rodents is the loss of righting reflex (LORR), or the point at which the animal no longer responds to their innate instinct to avoid the vulnerability of dorsal recumbency.
View Article and Find Full Text PDFBackground: Despite seventeen decades of continuous clinical use, the neuronal mechanisms through which volatile anesthetics act to produce unconsciousness remain obscure. One emerging possibility is that anesthetics exert their hypnotic effects by hijacking endogenous arousal circuits. A key sleep-promoting component of this circuitry is the ventrolateral preoptic nucleus (VLPO), a hypothalamic region containing both state-independent neurons and neurons that preferentially fire during natural sleep.
View Article and Find Full Text PDFHydrogen sulfide (H(2)S) depresses mitochondrial function and thereby metabolic rates in mice, purportedly resulting in a state of "suspended animation." Volatile anesthetics also depress mitochondrial function, an effect that may contribute to their anesthetic properties. In this study, we ask whether H(2)S has general anesthetic properties, and by extension, whether mitochondrial effects underlie the state of anesthesia.
View Article and Find Full Text PDFBackground: General anesthesia has been likened to a state in which anesthetized subjects are locked out of access to both rapid eye movement (REM) sleep and wakefulness. Were this true for all anesthetics, a significant REM rebound after anesthetic exposure might be expected. However, for the intravenous anesthetic propofol, studies demonstrate that no sleep debt accrues.
View Article and Find Full Text PDFOne major unanswered question in neuroscience is how the brain transitions between conscious and unconscious states. General anesthetics offer a controllable means to study these transitions. Induction of anesthesia is commonly attributed to drug-induced global modulation of neuronal function, while emergence from anesthesia has been thought to occur passively, paralleling elimination of the anesthetic from its sites in the central nervous system (CNS).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2008
The neural mechanisms through which the state of anesthesia arises and dissipates remain unknown. One common belief is that emergence from anesthesia is the inverse process of induction, brought about by elimination of anesthetic drugs from their CNS site(s) of action. Anesthetic-induced unconsciousness may result from specific interactions of anesthetics with the neural circuits regulating sleep and wakefulness.
View Article and Find Full Text PDFThe purpose of these experiments was to determine whether detecting brief decrements in noise level ("gaps") varies with the spectral content and bandwidth of noise in mice as it does in humans. The behavioral effect of gaps was quantified by their inhibiting a subsequent acoustic startle reflex. Gap durations from 1 to 29 ms were presented in five adjacent 1-octave noise bands and one 5-octave band, their range being 2 kHz to 64 kHz.
View Article and Find Full Text PDF