Microbially induced calcite precipitation is a biomineralization process with numerous civil engineering and ground improvement applications. In replicate soil columns, the efficacy and microbial composition of soil bioaugmented with the ureolytic bacterium were compared to a biostimulation method that enriches native ureolytic soil bacteria under conditions analogous to field implementation. The selective enrichment resulting from sequential stimulation treatments strongly selected for Firmicutes (>97%), with and comprising 60 to 94% of high-throughput 16S rDNA sequences in each suspended community sample.
View Article and Find Full Text PDFApplication of bio-inspired design in geotechnical engineering shows promise for improving the energy and material efficiency of several processes in infrastructure construction and site characterization. This project examines tree root systems for use in future bio-inspired design to improve the capacity of foundations used to support, for example, buildings and bridges. Foundation and anchorage elements used in industry are comprised almost solely of linear elements with a constant cross-sectional geometry.
View Article and Find Full Text PDFMicrobially Induced Calcite Precipitation (MICP), or bio-cementation, is a promising bio-mediated technology that can improve the engineering properties of soils through the precipitation of calcium carbonate. Despite significant advances in the technology, concerns regarding the fate of produced NH by-products have remained largely unaddressed. In this study, five 3.
View Article and Find Full Text PDFMicrobially Induced Calcite Precipitation (MICP) is a bio-mediated cementation process that can improve the engineering properties of granular soils through the precipitation of calcite. The process is made possible by soil microorganisms containing urease enzymes, which hydrolyze urea and enable carbonate ions to become available for precipitation. While most researchers have injected non-native ureolytic bacteria to complete bio-cementation, enrichment of native ureolytic microorganisms may enable reductions in process treatment costs and environmental impacts.
View Article and Find Full Text PDFMicrobially Induced Calcite Precipitation (MICP) is a biomediated soil cementation process that offers an environmentally conscious alternative to conventional geotechnical soil improvement technologies. This study provides the first comparison of ureolytic bacteria isolated from sand cemented in parallel, meter-scale, MICP experiments using either biostimulation or bioaugmentation approaches, wherein colonies resembling the augmented strain ( Sporosarcina pasteurii ATCC 11859) were interrogated. Over the 13 day experiment, 47 of the 57 isolates collected were strains of Sporosarcina and the diversity of these strains was high, with 20 distinct strains belonging to 5 species identified.
View Article and Find Full Text PDFUnlabelled: •
Premise Of The Study: Roots play an important role in strengthening and stabilizing soils. Existing models predict that tensile strength and root abundance are primary factors that strengthen soil. This study quantified how both factors are affected by root developmental stage.
Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming-these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, are enabled by or grown from soil.
View Article and Find Full Text PDF