Osteopontin (OPN) is a multi-functional glycoprotein that coordinates the innate immune response, prevents nanocrystal formation in renal tubule fluid, and is a biomarker for kidney injury. OPN expression is markedly increased in cystic epithelial cells of polycystic kidney disease (PKD) kidneys; however, its role in PKD progression remains unclear. We investigated the in vitro effects of recombinant OPN on the proliferation of tubular epithelial cells from PKD and normal human kidneys and in vivo effects of OPN deletion on kidney cyst formation, fibrosis, and mineral metabolism in pcy/pcy mice, a non-orthologous model of autosomal-dominant PKD.
View Article and Find Full Text PDFWe and others have previously shown that the presence of renal innate immune cells can promote polycystic kidney disease (PKD) progression. In this study, we examined the influence of the inflammasome, a key part of the innate immune system, on PKD. The inflammasome is a system of molecular sensors, receptors, and scaffolds that responds to stimuli like cellular damage or microbes by activating Caspase-1, and generating critical mediators of the inflammatory milieu, including IL-1β and IL-18.
View Article and Find Full Text PDFBackground: Abnormalities in calcium, phosphorus, PTH, vitamin D metabolism, bone, and vascular calcification occur in chronic kidney disease mineral bone disorder (CKD-MBD). Calciphylaxis, involving painful, ulcerative skin lesions, is also a major problem associated with CKD-MBD. There are no quality medical interventions to address these clinical issues.
View Article and Find Full Text PDFBackground: Nephron loss dramatically increases tubular phosphate to concentrations that exceed supersaturation. Osteopontin (OPN) is a matricellular protein that enhances mineral solubility in solution; however, the role of OPN in maintaining urinary phosphate solubility in CKD remains undefined.
Methods: Here, we examined () the expression patterns and timing of kidney/urine OPN changes in CKD mice, () if tubular injury is necessary for kidney OPN expression in CKD, () how OPN deletion alters kidney mineral deposition in CKD mice, () how neutralization of the mineral-binding (ASARM) motif of OPN alters kidney mineral deposition in phosphaturic mice, and () the effect of phosphate-based nanocrystals on tubular epithelial cell OPN expression.
Am J Physiol Renal Physiol
July 2022
Individuals with autosomal dominant polycystic kidney disease have a higher incidence of stone formation than the general population. However, there are no cystic animal models known to develop stones. Cystic mice compound heterozygous for hypomorphic and alleles develop cystic kidneys within a few weeks of birth but live beyond 20 wk of age, allowing for the study of cystic comorbidities including stone formation.
View Article and Find Full Text PDFPurpose Of Review: Progressive forms of chronic kidney disease (CKD) exhibit kidney inflammation and fibrosis that drive continued nephron loss; however, factors responsible for the development of these common pathologic features remain poorly defined. Recent investigations suggest pathways involved in maintaining urinary phosphate excretion in CKD may be contributing to kidney function decline. This review provides an update on recent evidence linking altered phosphate homeostasis to CKD progression.
View Article and Find Full Text PDFDecreases in short-chain-fatty-acids (SCFAs) are linked to inflammatory bowel disease (IBD). Yet, the mechanisms through which SCFAs promote wound healing, orchestrated by intestinal stem cells, are poorly understood. We discovered that, in mice with (CR)-induced infectious colitis, treatment with Pectin and Tributyrin diets reduced the severity of colitis by restoring and and by increasing mucus production.
View Article and Find Full Text PDFBackground: Recent evidence suggests the systemic accumulation of by-products of gut microbes contributes to cardiovascular morbidity in patients with CKD. Limiting the generation of toxic bacterial by-products by manipulating the intestinal microbiota may be a novel strategy for reducing cardiovascular disease in CKD. Rifaximin is a minimally absorbed, oral antibiotic that targets intestinal pathogens and is commonly used as chronic therapy for the prevention of encephalopathy in patients with cirrhosis.
View Article and Find Full Text PDFAlternative promoter usage generates long and short isoforms (DCLK1-L and DCLK1-S) of doublecortin-like kinase-1 (DCLK1). Tight control of Notch signaling is important to prevent and restitute inflammation in the intestine. Our aim was to investigate whether Notch1-DCLK1 axis regulates the mucosal immune responses to infection and whether this is phenocopied in human models of colitis.
View Article and Find Full Text PDFIntroduction: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive cyst growth and a loss of functioning renal mass, but a decline in glomerular filtration rate (GFR) and onset of end-stage renal disease (ESRD) occur late in the disease course. There is therefore a great need for early prognostic biomarkers in this disorder.
Methods: We measured baseline serum fibroblast growth factor 23 (FGF23) levels in 192 patients with ADPKD from the Consortium for Radiologic Imaging Studies of PKD (CRISP) cohort that were followed for a median of 13 years and tested the association between FGF23 levels and change over time in height-adjusted total kidney volume (htTKV), GFR, and time to the composite endpoints of ESRD, death, and doubling of serum creatinine.
Am J Physiol Heart Circ Physiol
May 2020
Cardiovascular disease is a major cause of morbidity and mortality among patients with chronic kidney disease (CKD). Trimethylamine--oxide (TMAO), a uremic metabolite that is elevated in the setting of CKD, has been implicated as a nontraditional risk factor for cardiovascular disease. While association studies have linked elevated plasma levels of TMAO to adverse cardiovascular outcomes, its direct effect on cardiac and smooth muscle function remains to be fully elucidated.
View Article and Find Full Text PDFCardiovascular disease (CVD) remains the leading cause of death in chronic kidney disease (CKD) patients despite treatment of traditional risk factors, suggesting that non-traditional CVD risk factors are involved. Trimethylamine-N-oxide (TMAO) correlates with atherosclerosis burden in CKD patients and may be a non-traditional CVD risk factor. Serum TMAO concentrations are significantly increased in CKD patients, which may be due in part to increased hepatic flavin monooxygenase (FMO)-mediated TMAO formation.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
January 2020
Studies in rodents with reduced nephron mass have suggested a strong positive correlation between dietary phosphate consumption and CKD progression. Prior work by our group demonstrated that dietary phosphate restriction can prevent tubular injury and microcyst formation in rodents with glomerulonephritis. Tubular injury and cystic dilation of tubules are key contributors to kidney function decline in polycystic kidney disease (PKD).
View Article and Find Full Text PDFGut-derived uremic toxins contribute to the uremic syndrome and are gaining attention as potentially modifiable cardiovascular disease risk factors in patients with underlying chronic kidney disease. A simple, rapid, robust, accurate and precise ultra-performance liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous determination of a panel of four gut-derived uremic toxins in human serum. The panel was comprised of kynurenic acid, hippuric acid, indoxyl sulfate, and p-cresol sulfate.
View Article and Find Full Text PDFBackground And Objectives: Trimethylamine -oxide (TMAO), a compound derived from byproducts of intestinal bacteria, has been shown to accelerate atherosclerosis in rodents. To date, there are conflicting data regarding the association of serum TMAO with cardiovascular outcomes in patients with ESKD, a population exhibiting both high serum TMAO and excessive atherosclerosis.
Design, Setting, Participants, & Measurements: We measured baseline serum TMAO concentrations in a subset of participants (=1243) from the Evaluation of Cinacalcet Hydrochloride Therapy to Lower Cardiovascular Events (EVOLVE) trial and conducted analyses evaluating the association between baseline serum TMAO and cardiovascular outcomes.
Circulating trimethylamine -oxide (TMAO) predicts poor cardiovascular outcomes in patients with chronic kidney disease (CKD). Accumulation of serum TMAO has been observed in CKD patients; however, the mechanisms contributing to this finding have been inadequately explored. The purpose of this study was to investigate the mechanisms responsible for TMAO accumulation in the setting of decreased kidney function using a CKD mouse model.
View Article and Find Full Text PDFPatients with CKD exhibit a disproportionate burden of cardiovascular mortality, which likely stems from the presence of unique, nontraditional risk factors that accompany deteriorating kidney function. Mounting evidence suggests that alterations to the intestinal microbiome in CKD may serve as one such risk factor. The human intestinal tract is home to >100 trillion micro-organisms made up of a collection of commensal, symbiotic, and pathogenic species.
View Article and Find Full Text PDFBackground: Vascular calcification is common among patients with chronic kidney disease (CKD), and it is associated with all-cause and cardiovascular disease mortality. Deoxycholic acid, a metabolite of circulating bile acids, is elevated in CKD and induces vascular mineralization and osteogenic differentiation in animal models.
Study Design: Cohort analysis of clinical trial participants.
Patients with chronic kidney disease (CKD) demonstrate complex mineral metabolism derangements and a high prevalence of vitamin D deficiency. However, the optimal method of 25-hydroxyvitamin D (25(OH)D) repletion is unknown, and trials analysing the comparative efficacy of cholecalciferol and ergocalciferol in this population are lacking. We conducted a randomised clinical trial of cholecalciferol 1250μg (50 000 IU) weekly v.
View Article and Find Full Text PDFTrimethlyamine-N-oxide (TMAO) was recently identified as a promoter of atherosclerosis. Patients with CKD exhibit accelerated development of atherosclerosis; however, no studies have explored the relationship between TMAO and atherosclerosis formation in this group. This study measured serum concentrations and urinary excretion of TMAO in a CKD cohort (n=104), identified the effect of renal transplant on serum TMAO concentration in a subset of these patients (n=6), and explored the cross-sectional relationship between serum TMAO and coronary atherosclerosis burden in a separate CKD cohort (n=220) undergoing coronary angiography.
View Article and Find Full Text PDFBackground/aims: Is cholecalciferol (D3) superior to ergocalciferol (D2) in treating nutritional vitamin D deficiency in chronic kidney disease (CKD)? The answer to this question has not been fully explored.
Methods: A retrospective analysis of 57 patients with non-dialysis-requiring CKD was conducted to assess the relative effectiveness of D2 versus D3 replacement on circulating 25(OH)D levels. Levels of 25(OH) D were assessed at baseline, after attempted repletion with D2, and then after attempted repletion with D3.
A simple, sensitive, and precise ultra-high performance liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous determination of trimethylamine N-oxide, choline, and betaine in human plasma and urine. Sample preparation involved protein precipitation with methanol containing internal standards. Chromatographic separation was achieved using an Acquity BEH Amide (2.
View Article and Find Full Text PDFBackground And Objectives: Elevated concentrations of fibroblast growth factor 23 (FGF23) are postulated to promote 25-hydroxyvitamin D (25[OH]D) insufficiency in CKD by stimulating 24-hydroxylation of this metabolite, leading to its subsequent degradation; however, prospective human studies testing this relationship are lacking.
Design, Setting, Participants, & Measurements: An open-label prospective study was conducted from October 2010 through July 2012 to compare the effect of 8 weeks of oral cholecalciferol therapy (50,000 IU twice weekly) on the production of 24,25(OH)2D3 in vitamin D-insufficient patients with CKD (n=15) and controls with normal kidney function (n=15). Vitamin D metabolites were comprehensively profiled at baseline and after treatment, along with FGF23 and other mineral metabolism parameters.