Publications by authors named "Jason Stammen"

The objective of this study was to assess the biofidelity of the Global Human Body Models Consortium (GHBMC) 50 male (M50-O) v6.0 seated in an upright (25-degree recline) all-belts-to-seat (ABTS) in a 56 km/h rear-facing frontal impact. The experimental boundary conditions from the post-mortem human subjects (PMHS) tests were replicated in the computational finite element (FE) environment.

View Article and Find Full Text PDF

The shoulder girdle complex, through engagement with the seat belt, influences motor vehicle occupant upper body movement during frontal impacts, affecting the movement of the head and spine. The recently developed Large Omni-directional Child (LODC) anthropomorphic test device (ATD) was designed with flexible shoulder girdle structures that capture the unique kinematics in pediatric occupants. However, the LODC shoulder has not been evaluated for biofidelity due to the lack of biomechanical data available on pediatric shoulder responses.

View Article and Find Full Text PDF

One potential nonstandard seating configuration for vehicles with automated driving systems (ADS) is a reclined seat that is rear-facing when in a frontal collision. There are limited biomechanical response and injury data for this seating configuration during high-speed collisions. The main objective of this study was to investigate thoracic biomechanical responses and injuries to male postmortem human subjects (PMHS) in a rear-facing scenario with varying boundary conditions.

View Article and Find Full Text PDF

Objective: The objective of this study was the quantitative evaluation and comparison of the responses of the Hybrid III 5th percentile female (HIII-05F) and the 5th percentile female Test Device for Human Occupant Restraint (THOR-05F) anthropomorphic test devices (ATDs) subjected to abdominal loading conditions.

Method: The HIII-05F and THOR-05F were subjected to 3 different abdominal loading conditions: fixed-back belt pull (low compression), fixed-back belt pull (high compression), and free-back rigid bar impact at 6 m/s. The stroke of the impact was controlled to represent injurious and noninjurious loading conditions as observed in the experiments with postmortem human subjects (PMHS).

View Article and Find Full Text PDF

Objective: The purpose of this study was to generate biomechanical response corridors of the small female thorax during a frontal hub impact and evaluate scaled corridors that have been used to assess biofidelity of small female anthropomorphic test devices (ATDs) and human body models (HBMs).

Methods: Three small female postmortem human subjects (PMHS) were tested under identical conditions, in which the thorax was impacted using a 14.0 kg pneumatic impactor at an impact velocity of 4.

View Article and Find Full Text PDF

The objective of this study was to generate biomechanical corridors from post-mortem human subjects (PMHS) in two different seatback recline angles in 56 km/h sled tests simulating a rear-facing occupant during a frontal vehicle impact. PMHS were placed in a production seat which included an integrated seat belt. To achieve a repeatable configuration, the seat was rigidized in the rearward direction using a reinforcing frame that allowed for adjustability in both seatback recline angle and head restraint position.

View Article and Find Full Text PDF

Thorax injuries mainly due to rib fractures have been associated with high rates of morbidity and mortality in motor vehicle crashes. Thoracic biomechanics has been studied extensively, but there are no robust biomechanical response targets for ribs that consider age, sex, body size, and vulnerability factors. The objective of this study was to generate biomechanical targets for human rib response with respect to age, sex, and body size.

View Article and Find Full Text PDF

Thoracic injuries are frequently observed in motor vehicle crashes, and rib fractures are the most common of those injuries. Thoracic response targets have previously been developed from data obtained from post-mortem human subject (PMHS) tests in frontal loading conditions, most commonly of mid-size males. Traditional scaling methods are employed to identify differences in thoracic response for various demographic groups, but it is often unknown if these applications are appropriate, especially considering the limited number of tested PMHS from which those scaling factors originate.

View Article and Find Full Text PDF

Objective: Motor vehicle occupants aged 8 to 12 years are in transition, in terms of both restraint use (booster seat or vehicle belt) and anatomical development. Rear-seated occupants in this age group are more likely to be inappropriately restrained than other age groups, increasing their vulnerability to spinal injury. The skeletal anatomy of an 8- to 12-year-old child is also in developmental transition, resulting in spinal injury patterns that are unique to this age group.

View Article and Find Full Text PDF

Thoracic injuries continue to be a major health concern in motor vehicle crashes. Previous thoracic research has focused on 50 percentile males and utilized scaling techniques to apply results to different demographics. Individual rib testing offers the advantage of capturing demographic differences; however, understanding of rib properties in the context of the intact thorax is lacking.

View Article and Find Full Text PDF

Despite safety advances, thoracic injuries in motor vehicle crashes remain a significant source of morbidity and mortality, and rib fractures are the most prevalent of thoracic injuries. The objective of this study was to explore sources of variation in rib structural properties in order to identify sources of differential risk of rib fracture between vehicle occupants. A hierarchical model was employed to quantify the effects of demographic differences and rib geometry on structural properties including stiffness, force, displacement, and energy at failure and yield.

View Article and Find Full Text PDF

When the Hybrid III 10-year old (HIII-10C) anthropomorphic test device (ATD) was adopted into Code of Federal Regulations (CFR) 49 Part 572 as the best available tool for evaluating large belt-positioning booster seats in Federal Motor Vehicle Safety Standard (FMVSS) No. 213, NHTSA stated that research activities would continue to improve the performance of the HIII-10C to address biofidelity concerns. A significant part of this effort has been NHTSA's in-house development of the Large Omnidirectional Child (LODC) ATD.

View Article and Find Full Text PDF

Past studies have found that a pressure based injury risk function was the best predictor of liver injuries due to blunt impacts. In an effort to expand upon these findings, this study investigated the biomechanical responses of the abdomen of post mortem human surrogates (PMHS) to high-speed seatbelt loading and developed external response targets in conjunction with proposing an abdominal injury criterion. A total of seven unembalmed PMHS, with an average mass and stature of 71 kg and 174 cm respectively were subjected to belt loading using a seatbelt pull mechanism, with the PMHS seated upright in a freeback configuration.

View Article and Find Full Text PDF

Anthropomorphic test devices (ATDs) should accurately depict head kinematics in crash tests, and thoracic spine properties have been demonstrated to affect those kinematics. To investigate the relationships between thoracic spine system dynamics and upper thoracic kinematics in crash-level scenarios, three adult post-mortem human subjects (PMHS) were tested in both Isolated Segment Manipulation (ISM) and sled configurations. In frontal sled tests, the T6-T8 vertebrae of the PMHS were coupled through a novel fixation technique to a rigid seat to directly measure thoracic spine loading.

View Article and Find Full Text PDF

Thoracic spine flexibility affects head motion, which is critical to control in motor vehicle crashes given the frequency and severity of head injuries. The objective of this study is to investigate the dynamic response of the human upper thoracic region. An original experimental/analytical approach, Isolated Segment Manipulation (ISM), is introduced to quantify the intact upper thoracic spine-pectoral girdle (UTS-PG) dynamic response of six adult post-mortem human subjects (PMHS).

View Article and Find Full Text PDF

Liver trauma research suggests that rapidly increasing internal pressure plays a role in liver injury. Previous work has shown a correlation between pressure and liver injury in pressurized ex vivo human livers when subjected to blunt impacts. The purpose of this study was to extend the investigation of this relationship between pressure and liver injury by testing full-body post-mortem human surrogates (PMHS).

View Article and Find Full Text PDF

Chin-to-chest impact commonly occurs in frontal crash simulations with restrained anthropomorphic test devices (ATDs) in non-airbag situations. This study investigated the biofidelity of this contact by evaluating the impact response of both the chin and manubrium of adult post-mortem human subjects (PMHSs). The adult PMHS data were scaled to a 10-year-old (YO) human size and then compared with the Hybrid III 10YO child (HIII-10C) ATD response with the same test configurations.

View Article and Find Full Text PDF

Liver trauma research suggests that rapidly increasing internal pressure plays a role in causing blunt liver injury. Knowledge of the relationship between pressure and the likelihood of liver injury could be used to enhance the design of crash test dummies. The objectives of this study were (1) to characterize the relationship between impact-induced pressures and blunt liver injury in an experimental model to impacts of ex vivo organs; and (2) to compare human liver vascular pressure and tissue pressure in the parenchyma with other biomechanical variables as predictors of liver injury risk.

View Article and Find Full Text PDF