Our current understanding of knee mechanics and anterior cruciate ligament (ACL) function is predominately based on data recorded during simulations of clinical examinations or the application of nonphysiologic loads and motions. These methodologies provide little information on knee and ACL mechanics during activities of daily living (ADLs). Additionally, researchers have not directly measured knee kinetics, knee contact pressures, and ACL forces, and it is unknown how these parameters change with different activities.
View Article and Find Full Text PDFBackground: Following anterior cruciate ligament injury and subsequent reconstruction transverse plane tibiofemoral rotation becomes underconstrained and overconstrained, respectively. Conflicting reports exist on how rotations influence loading at the knee. This investigation aimed to determine the mechanical effects of internal and external tibial rotation offsets on knee kinematics and ligament strains during in vitro simulations of in vivo recorded kinematics.
View Article and Find Full Text PDFCadaveric simulation models allow researchers to study native tissues in situ. However, as tests are conducted using donor specimens with unmatched kinematics, techniques that impose population average motions are subject to deviation from true physiologic conditions. This study aimed to identify factors which explain the kinetic variability observed during robotic simulations of a single human gait motion using a sample of human cadaver knees.
View Article and Find Full Text PDFBackground: Anterior cruciate ligament (ACL) injures incur over USD 2 billion in annual medical costs and prevention has become a topic of interest in biomechanics. However, literature conflicts persist over how knee rotations contribute to ACL strain and ligament injury. To maximize the efficacy of ACL injury prevention, the effects of underlying mechanics need to be better understood.
View Article and Find Full Text PDFLimb asymmetry is a known factor for increased ACL injury risk. These asymmetries are normally observed during in vivo testing. Prior studies have developed in vitro testing methodologies driven by in vivo kinematics to investigate knee mechanics relative to ACL injury.
View Article and Find Full Text PDFPurpose Of The Study: Identifying biological success criteria is needed to improve therapies, and one strategy for identifying them is to analyze the RNA transcriptome for successful and unsuccessful models of tendon healing. We have characterized the MRL/MpJ murine strain and found improved mechanical outcomes following a central patellar tendon (PT) injury. In this study, we evaluate the healing of the LG/J murine strain, which comprises 75% of the MRL/MpJ background, to determine if the LG/J also exhibits improved biomechanical properties following injury and to determine differentially expressed transcription factors across the C57BL/6, MRL/MpJ and the LG/J strains during the early stages of healing.
View Article and Find Full Text PDFBackground: Tibial slope angle is a nonmodifiable risk factor for anterior cruciate ligament (ACL) injury. However, the mechanical role of varying tibial slopes during athletic tasks has yet to be clinically quantified.
Purpose: To examine the influence of posterior tibial slope on knee joint loading during controlled, in vitro simulation of the knee joint articulations during athletic tasks.
ACL injury rates are greater in female athletes than their male counterparts. As female athletes are at increased risk, it is important to understand the underlying mechanics that contribute to this sex bias. The purpose of this investigation was to employ a robotic manipulator to simulate male and female kinematics from athletic tasks on cadaveric specimens and identify sex-based mechanical differences relative to the ACL loading.
View Article and Find Full Text PDFRobotic testing offers researchers the opportunity to quantify native tissue loads for the structures of the knee joint during activities of daily living. These loads may then be translated into design requirements for future treatments and procedures to combat the early onset of knee degeneration following an injury. However, high knee loads during testing have the potential to deflect a robotic end effector and cause inaccuracies in the applied kinematics.
View Article and Find Full Text PDFBackground: The medial collateral (MCL) and anterior cruciate ligaments (ACL) are, respectively, the primary and secondary ligamentous restraints against knee abduction, which is a component of the valgus collapse often associated with ACL rupture during athletic tasks. Despite this correlation in function, MCL ruptures occur concomitantly in only 20% to 40% of ACL injuries.
Hypothesis/purpose: The purpose of this investigation was to determine how athletic tasks load the knee joint in a manner that could lead to ACL failure without concomitant MCL failure.
This study determined how anterior cruciate ligament (ACL) reconstruction affected the magnitude and temporal patterns of anterior knee force and internal knee moment during 2000 cycles of simulated gait. Porcine knees were tested using a six degree-of-freedom robot, examining three porcine allograft materials compared with the native ACL. Reconstructions were performed using: (1) bone-patellar tendon-bone allograft (BPTB), (2) reconstructive porcine tissue matrix (RTM), or (3) an RTM-polymer hybrid construct (Hybrid).
View Article and Find Full Text PDFMusculoskeletal injuries greatly affect the U.S. population and current clinical approaches fail to restore long-term native tissue structure and function.
View Article and Find Full Text PDFSix degree of freedom (6-DOF) robotic manipulators have simulated clinical tests and gait on cadaveric knees to examine knee biomechanics. However, these activities do not necessarily emulate the kinematics and kinetics that lead to anterior cruciate ligament (ACL) rupture. The purpose of this study was to determine the techniques needed to derive reproducible, in vitro simulations from in vivo skin-marker kinematics recorded during simulated athletic tasks.
View Article and Find Full Text PDFRestoring the native structure of the tendon enthesis, where collagen fibers of the midsubstance are integrated within a fibrocartilaginous structure, is problematic following injury. As current surgical methods fail to restore this region adequately, engineers, biologists, and clinicians are working to understand how this structure forms as a prerequisite to improving repair outcomes. We recently reported on the role of Indian hedgehog (Ihh), a novel enthesis marker, in regulating early postnatal enthesis formation.
View Article and Find Full Text PDFInvestigators use in vitro joint simulations to invasively study the biomechanical behaviors of the anterior cruciate ligament. The aims of these simulations are to replicate physiologic conditions, but multiple mechanisms can be used to drive in vitro motions, which may influence biomechanical outcomes. The objective of this review was to examine, summarize, and compare biomechanical evidence related to anterior cruciate ligament function from in vitro simulations of knee motion.
View Article and Find Full Text PDFThe prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications.
View Article and Find Full Text PDFThis study compared three-dimensional forces in knees containing anterior cruciate ligament (ACL) graft materials versus the native porcine ACL. A six-degree-of-freedom (DOF) robot simulated gait while recording the joint forces and moments. Knees were subjected to 10 cycles of simulated gait in intact, ACL-deficient, and ACL-reconstructed knee states to examine time zero biomechanical performance.
View Article and Find Full Text PDFBackground: Although coil embolization is known to prevent rebleeding from acutely ruptured cerebral aneurysms, the underlying biological and mechanical mechanisms have not been characterized. We sought to determine if microcoil-dependent interactions with thrombus induce structural and mechanical changes in the adjacent fibrin network. Such changes could play an important role in the prevention of aneurysm rebleeding.
View Article and Find Full Text PDFKnee soft tissue structures are frequently injured, leading to the development of osteoarthritis even with treatment. Understanding how these structures contribute to knee function during activities of daily living (ADLs) is crucial in creating more effective treatments. This study was designed to determine the role of different knee structures during a simulated ADL in both human knees and ovine stifle joints.
View Article and Find Full Text PDFTendon-to-bone healing following acute injury is generally poor and often fails to restore normal tendon biomechanical properties. In recent years, the murine patellar tendon (PT) has become an important model system for studying tendon healing and repair due to its genetic tractability and accessible location within the knee. However, the mechanical properties of native murine PT, specifically the regional differences in tissue strains during loading, and the biomechanical outcomes of natural PT-to-bone healing have not been well characterized.
View Article and Find Full Text PDFImproving tendon repair using Functional Tissue Engineering (FTE) principles has been the focus of our laboratory over the last decade. Although our primary goals were initially focused only on mechanical outcomes, we are now carefully assessing the biological properties of our tissue-engineered tendon repairs so as to link biological influences with mechanics. However, given the complexities of tendon development and healing, it remains challenging to determine which aspects of tendon biology are the most important to focus on in the context of tissue engineering.
View Article and Find Full Text PDFJ Bone Joint Surg Am
September 2013
Tendon injuries often result from excessive or insufficient mechanical loading, impairing the ability of the local tendon cell population to maintain normal tendon function. The resident cell population composing tendon tissue is mechanosensitive, given that the cells are able to alter the extracellular matrix in response to modifications of the local loading environment. Natural tendon healing is insufficient, characterized by improper collagen fibril diameter formation, collagen fibril distribution, and overall fibril misalignment.
View Article and Find Full Text PDFThe origin of cells that contribute to tendon healing, specifically extrinsic epitenon/paratenon cells vs. internal tendon fibroblasts, is still debated. The purpose of this study is to determine the location and phenotype of cells that contribute to healing of a central patellar tendon defect injury in the mouse.
View Article and Find Full Text PDFIn this paper, we had four primary objectives. (1) We reviewed a brief history of the Lissner award and the individual for whom it is named, H.R.
View Article and Find Full Text PDFInvestigators do not yet understand the role of intrinsic tendon cells in healing at the tendon-to-bone enthesis. Therefore, our first objective was to understand how the native cell population influences tendon autograft incorporation in the central-third patellar tendon (PT) defect site. To do this, we contrasted the histochemical and biomechanical properties of de-cellularized patellar tendon autograft (dcPTA) and patellar tendon autograft (PTA) repairs in the skeletally mature New Zealand white rabbit.
View Article and Find Full Text PDF