Publications by authors named "Jason Sadek"

mRNA stability is the mechanism by which cells protect transcripts allowing their expression to execute various functions that affect cell metabolism and fate. It is well-established that RNA binding proteins (RBPs) such as HuR use their ability to stabilize mRNA targets to modulate vital processes such as muscle fiber formation (myogenesis). However, the machinery and the mechanisms regulating mRNA stabilization are still elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Cachexia syndrome causes people with serious illnesses like cancer to lose muscle strength over time.
  • The study found that blocking a protein called iNOS can help prevent this muscle loss in mice.
  • The researchers showed that iNOS harms muscle energy production, but using a special drug (GW274150) can fix this problem and help treat cachexia.
View Article and Find Full Text PDF

The cellular stress response is a universal mechanism necessary for the survival of all organisms. This multifaceted process is primarily driven by regulation of gene expression to produce an intracellular environment suitable for promoting cell survival and recovery. Posttranscriptional regulatory events are considered as critical mechanisms that modulate core characteristics of mRNA transcripts to promote cell adaptation to various assaults.

View Article and Find Full Text PDF

Cachexia is a deadly muscle wasting syndrome that arises under conditions linked to chronic inflammation, such as cancer. Cytokines, including interferon γ (IFNγ), tumor necrosis factor α (TNFα) and interleukin-6 (IL-6), and their downstream effectors such as Signal Transducer and Activator of Transcription 3 (STAT3), have been shown to play a prominent role in muscle wasting. Previously, we demonstrated that Pateamine A (PatA), a compound that targets eukaryotic initiation factor 4A (eIF4A), could prevent muscle wasting by modulating the translation of the inducible Nitric Oxide Synthase (iNOS) mRNA.

View Article and Find Full Text PDF

Activation of AMPK has been associated with pro-atrophic signaling in muscle. However, AMPK also has anti-inflammatory effects, suggesting that in cachexia, a syndrome of inflammatory-driven muscle wasting, AMPK activation could be beneficial. Here we show that the AMPK agonist AICAR suppresses IFNγ/TNFα-induced atrophy, while the mitochondrial inhibitor metformin does not.

View Article and Find Full Text PDF

Cellular senescence is a physiological response by which an organism halts the proliferation of potentially harmful and damaged cells. However, the accumulation of senescent cells over time can become deleterious leading to diseases and physiological decline. Our data reveal a novel interplay between senescence and the stress response that affects both the progression of senescence and the behavior of senescent cells.

View Article and Find Full Text PDF