Our objective was to study the effect of differing dietary crude protein and vitamin A on retinoid metabolism in a periparturient rat model. Sixty female rats, approximately 21 d before parturition, were fed rations containing either low protein (13%; LP) or high protein (22%; HP) crude protein and either low vitamin A (3 IU/g; LA) or high vitamin A (5 IU/g; HA), yielding treatments HPHA, HPLA, LPHA, and LPLA. Samples were collected at d -14, d +3, and +10 relative to parturition and analyzed for retinoid acid (RA), RA, and retinol.
View Article and Find Full Text PDFRNA interference is a powerful tool for dissecting gene function. In , ingestion of double stranded RNA causes strong, systemic knockdown of target genes. Further insight into gene function can be revealed by tissue-specific RNAi techniques.
View Article and Find Full Text PDFBiotin is an essential cofactor for multiple metabolic reactions catalyzed by carboxylases. Biotin is covalently linked to apoproteins by holocarboxylase synthetase (HCS). Accordingly, some mutations in HCS cause holocarboxylase deficiency, a rare metabolic disorder that can be life-threatening if left untreated.
View Article and Find Full Text PDFFeeding rations supplemented with fats may provide an opportunity to manipulate the health and performance of dairy cows; however, the relative effects of specific fats, such as trans fatty acids (TFA), are poorly understood. The objective of this study was to investigate the effects of a ration supplemented with TFA on the fatty acid (FA) profile of peripheral blood mononuclear cells (PBMC), plasma lipids, and milk; the gene expression of inflammatory markers; production of acute phase proteins; and production performance in early lactating dairy cows. Trans fat was fed at 0, 1.
View Article and Find Full Text PDF