Purpose: Meniscal injuries are common in knee surgery and often require preservation techniques to prevent secondary osteoarthritis. Despite advancements in repair techniques, some patients undergo partial meniscectomy, which can lead to postmeniscectomy syndrome. To address these challenges, meniscal substitution techniques like scaffolds have been developed.
View Article and Find Full Text PDFANP32 proteins, which act as influenza polymerase cofactors, vary between birds and mammals. In mammals, ANP32A and ANP32B have been reported to serve essential but redundant roles to support influenza polymerase activity. The well-known mammalian adaptation PB2-E627K enables influenza polymerase to use mammalian ANP32 proteins.
View Article and Find Full Text PDFOrthop Clin North Am
October 2022
Highly pathogenic H5N1 avian influenza viruses cause devastating outbreaks in farmed poultry with serious consequences for animal welfare and economic losses. Zoonotic infection of humans through close contact with H5N1 infected birds is often severe and fatal. England experienced an outbreak of H5N1 in turkeys in 1991 that led to thousands of farmed bird mortalities.
View Article and Find Full Text PDFPurpose: To assess the national trends in arthroscopic and open rotator cuff repair surgery and the associated demographics, complications, and risk factors specific to each procedure.
Methods: A retrospective cohort study was performed using the National Surgical Quality Improvement Program (NSQIP) dataset between the years 2007 and 2018. Patients were identified using Common Procedural Terminology codes for open and arthroscopic rotator cuff repair.
Avian influenza viruses occasionally infect and adapt to mammals, including humans. Swine are often described as "mixing vessels," being susceptible to both avian- and human-origin viruses, which allows the emergence of novel reassortants, such as the precursor to the 2009 H1N1 pandemic. ANP32 proteins are host factors that act as influenza virus polymerase cofactors.
View Article and Find Full Text PDFThe avian-origin influenza A virus polymerase is restricted in human cells. This restriction has been associated with species differences in host factor ANP32A. Avian ANP32A supports the activity of an avian-origin polymerase.
View Article and Find Full Text PDFANP32 proteins have been implicated in supporting influenza virus replication, but most of the work to date has focused on the ability of avian Anp32 proteins to overcome restriction of avian influenza polymerases in human cells. Using a CRISPR approach, we show that the human cidic uclear hosphoproteins (ANPs) ANP32A and ANP32B are functionally redundant but essential host factors for mammalian-adapted influenza A virus (IAV) and influenza B virus (IBV) replication in human cells. When both proteins are absent from human cells, influenza polymerases are unable to replicate the viral genome, and infectious virus cannot propagate.
View Article and Find Full Text PDFInfluenza A viruses (IAV) are subject to species barriers that prevent frequent zoonotic transmission and pandemics. One of these barriers is the poor activity of avian IAV polymerases in human cells. Differences between avian and mammalian ANP32 proteins underlie this host range barrier.
View Article and Find Full Text PDFIn Figure 4, seasonal influenza virus was erroneously indicated as having "HA α2-3 SA preference" instead of "HA drift from population immunity" to represent ongoing evolution of seasonal influenza virus. This has now been corrected in all versions of the Review. The publisher apologizes to the authors and to readers for this error.
View Article and Find Full Text PDFNat Rev Microbiol
January 2019
Influenza A viruses cause pandemics when they cross between species and an antigenically novel virus acquires the ability to infect and transmit between these new hosts. The timing of pandemics is currently unpredictable but depends on ecological and virological factors. The host range of an influenza A virus is determined by species-specific interactions between virus and host cell factors.
View Article and Find Full Text PDFInfluenza viruses use an RNA-dependent RNA polymerase (RdRp) to transcribe and replicate their segmented negative-stranded RNA genomes. The influenza A virus RdRp consists of a heterotrimeric complex of the proteins PB1, PB2, and PA. The RdRp is associated with the incoming influenza A viral RNA (vRNA) genome bound by the viral nucleoprotein (NP), in complexes called viral ribonucleoproteins, vRNPs.
View Article and Find Full Text PDFThe highly pathogenic avian influenza (HPAI) H5N1 influenza virus has been a public health concern for more than a decade because of its frequent zoonoses and the high case fatality rate associated with human infections. Severe disease following H5N1 influenza infection is often associated with dysregulated host innate immune response also known as cytokine storm but the virological and cellular basis of these responses has not been clearly described. We rescued a series of 6:2 reassortant viruses that combined a PR8 HA/NA pairing with the internal gene segments from human adapted H1N1, H3N2, or avian H5N1 viruses and found that mice infected with the virus with H5N1 internal genes suffered severe weight loss associated with increased lung cytokines but not high viral load.
View Article and Find Full Text PDFInfluenza pandemics occur unpredictably when zoonotic influenza viruses with novel antigenicity acquire the ability to transmit amongst humans. Host range breaches are limited by incompatibilities between avian virus components and the human host. Barriers include receptor preference, virion stability and poor activity of the avian virus RNA-dependent RNA polymerase in human cells.
View Article and Find Full Text PDFWe hypothesise that some influenza virus adaptations to poultry may explain why the barrier for human-to-human transmission is not easily overcome once the virus has crossed from wild birds to chickens. Since the cluster of human infections with H5N1 influenza in Hong Kong in 1997, chickens have been recognized as the major source of avian influenza virus infection in humans. Although often severe, these infections have been limited in their subsequent human-to-human transmission, and the feared H5N1 pandemic has not yet occurred.
View Article and Find Full Text PDFTypical avian influenza A viruses are restricted from replicating efficiently and causing disease in humans. However, an avian virus can become adapted to humans by mutating or recombining with currently circulating human viruses. These viruses have the potential to cause pandemics in an immunologically naïve human population.
View Article and Find Full Text PDFClade 2.2 Eurasian-lineage H5N1 highly pathogenic avian influenza viruses (HPAIVs) were first detected in Qinghai Lake, China, in 2005 and subsequently spread through Asia, Europe, and Africa. Importantly, these viruses carried a lysine at amino acid position 627 of the PB2 protein (PB2 627K), a known mammalian adaptation motif.
View Article and Find Full Text PDFReassortant influenza viruses with combinations of avian, human, and/or swine genomic segments have been detected frequently in pigs. As a consequence, pigs have been accused of being a "mixing vessel" for influenza viruses. This implies that pig cells support transcription and replication of avian influenza viruses, in contrast to human cells, in which most avian influenza virus polymerases display limited activity.
View Article and Find Full Text PDF