The rapidly advancing field of nanotechnology is driving the development of precise sensing methods at the nanoscale, with solid-state nanopores emerging as promising tools for biomolecular sensing. This study investigates the increased sensitivity of solid-state nanopores achieved by integrating DNA origami structures, leading to the improved analysis of protein translocations. Using holo human serum transferrin (holo-hSTf) as a model protein, we compared hybrid nanopores incorporating DNA origami with open solid-state nanopores.
View Article and Find Full Text PDFControlling the three-dimensional (3D) nanoarchitecture of inorganic materials is imperative for enabling their novel mechanical, optical, and electronic properties. Here, by exploiting DNA-programmable assembly, we establish a general approach for realizing designed 3D ordered inorganic frameworks. Through inorganic templating of DNA frameworks by liquid- and vapor-phase infiltrations, we demonstrate successful nanofabrication of diverse classes of inorganic frameworks from metal, metal oxide and semiconductor materials, as well as their combinations, including zinc, aluminum, copper, molybdenum, tungsten, indium, tin, and platinum, and composites such as aluminum-doped zinc oxide, indium tin oxide, and platinum/aluminum-doped zinc oxide.
View Article and Find Full Text PDFDNA nanotechnology has increasingly been used as a platform to scaffold enzymes based on its unmatched ability to structure enzymes in a desired format. The capability to organize enzymes has taken many forms from more traditional 2D pairings on individual scaffolds to recent works introducing enzyme organizations in 3D lattices. As the ability to define nanoscale structure has grown, it is critical to fully deconstruct the impact of enzyme organization at the single-scaffold level.
View Article and Find Full Text PDFNanoparticles have long been recognized for their unique properties, leading to exciting potential applications across optics, electronics, magnetism, and catalysis. These specific functions often require a designed organization of particles, which includes the type of order as well as placement and relative orientation of particles of the same or different kinds. DNA nanotechnology offers the ability to introduce highly addressable bonds, tailor particle interactions, and control the geometry of bindings motifs.
View Article and Find Full Text PDFThe ability to organize nanoscale objects into well-defined three-dimensional (3D) arrays can translate advances in nanoscale synthesis into targeted material fabrication. Despite successes in nanoparticle assembly, most extant methods are system specific and not fully compatible with biomolecules. Here, we report a platform for creating distinct 3D ordered arrays from different nanomaterials using DNA-prescribed and valence-controlled material voxels.
View Article and Find Full Text PDFDNA-mediated self-assembly of nanoparticles has been of great interest because it enables access to nanoparticle superstructures that cannot be synthesized otherwise. However, the programmability of higher order nanoparticle structures can be easily lost under DNA denaturing conditions. Here, we demonstrate that light can be employed as an external stimulus to master the stability of nanoparticle superlattices (SLs) via the promotion of a reversible photoligation of DNA in SLs.
View Article and Find Full Text PDFMimicking complex cellular dynamic chemical networks being up-regulated or down-regulated by external triggers is one of the challenges in systems chemistry. Constitutional dynamic networks (CDNs), composed of exchangeable components that respond to environmental triggers by self-adaption, provide general means to mimic biosystems. We use the structural and functional information encoded in nucleic acid nanostructures to construct effector (input)-triggered constitutional dynamic networks that reveal adaptable catalytic properties.
View Article and Find Full Text PDFHerein, a method to construct stimuli-responsive DNA-acrylamide-based hydrogel microcapsules has been presented. This method involves the use of polyacrylamide chains modified with predesigned nucleic acid hairpin units and optionally single-strand tethers that provide the required hybridization and recognition functions to yield substrate-loaded stimuli-responsive hydrogel-based microcapsules. The synthesis of the microcapsules involves the loading of CaCO microparticles with the respective load substrates and the functionalization of the CaCO template particles with nucleic acid promoter units.
View Article and Find Full Text PDFThe base sequence of nucleic acids encodes structural and functional information into the DNA biopolymer. External stimuli such as metal ions, pH, light, or added nucleic acid fuel strands provide triggers to reversibly switch nucleic acid structures such as metal-ion-bridged duplexes, i-motifs, triplex nucleic acids, G-quadruplexes, or programmed double-stranded hybrids of oligonucleotides (DNA). The signal-triggered oligonucleotide structures have been broadly applied to develop switchable DNA nanostructures and DNA machines, and these stimuli-responsive assemblies provide functional scaffolds for the rapidly developing area of DNA nanotechnology.
View Article and Find Full Text PDFWe present the assembly of asymmetric two-layer hybrid DNA-based hydrogels revealing stimuli-triggered reversibly modulated shape transitions. Asymmetric, linear hydrogels that include layer-selective switchable stimuli-responsive elements that control the hydrogel stiffness are designed. Trigger-induced stress in one of the layers results in the bending of the linear hybrid structure, thereby minimizing the elastic free energy of the systems.
View Article and Find Full Text PDFThe synthesis of nucleic acid-functionalized metal-organic frameworks (MOFs) is described. The metal-organic frameworks are loaded with a dye being locked in the structures by means of stimuli-responsive nucleic acid caps. The pH and K -ion-triggered release, and switchable release, are demonstrated.
View Article and Find Full Text PDFDNA-based shape-memory hydrogels revealing switchable shape recovery in the presence of two orthogonal triggers are described. In one system, a shaped DNA/acrylamide hydrogel is stabilized by duplex nucleic acids and pH-responsive cytosine-rich, i-motif, bridges. Separation of the i-motif bridges at pH 7.
View Article and Find Full Text PDFWithin the broad interest of assembling chiral left- and right-handed helices of plasmonic nanoparticles (NPs), we introduce the DNA-guided organization of left- or right-handed plasmonic Au NPs on DNA scaffolds. The method involves the self-assembly of stacked 12 DNA quasi-rings interlinked by 30 staple-strands. By the functionalization of one group of staple units with programmed tether-nucleic acid strands and additional staple elements with long nucleic acid chains, acting as promoter strands, the promoter-guided assembly of barrels modified with 12 left- or right-handed tethers is achieved.
View Article and Find Full Text PDFProtein expression and selection is an essential process in the modification of biological products. Expressed proteins are selected based on desired traits (phenotypes) from diverse gene libraries (genotypes), whose size may be limited due to the difficulties inherent in diverse cell preparation. In addition, not all genes can be expressed in cells, and linking genotype with phenotype further presents a great challenge in protein engineering.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2016
The synthesis of a shape-memory acrylamide-DNA hydrogel that includes two internal memories is introduced. The hydrogel is stabilized, at pH 7.0, by two different pH-responsive oligonucleotide crosslinking units.
View Article and Find Full Text PDFLayered metal nanoparticle (NP) assemblies provide highly porous and conductive composites of unique electrical and optical (plasmonic) properties. Two methods to construct layered metal NP matrices are described, and these include the layer-by-layer deposition of NPs, or the electropolymerization of monolayer-functionalized NPs, specifically thioaniline-modified metal NPs. The layered NP composites are used as sensing matrices through the use of electrochemistry or surface plasmon resonance (SPR) as transduction signals.
View Article and Find Full Text PDFA novel method to assemble acrylamide/acrydite DNA copolymer hydrogels on surfaces, specifically gold-coated surfaces, is introduced. The method involves the synthesis of two different copolymer chains consisting of hairpin A, HA, modified acrylamide copolymer and hairpin B, HB, acrylamide copolymer. In the presence of a nucleic acid promoter monolayer associated with the surface, the hybridization chain reaction between the two hairpin-modified polymer chains is initiated, giving rise to the cross-opening of hairpins HA and HB and the formation of a cross-linked hydrogel on the surface.
View Article and Find Full Text PDFThe multiparametric nature of nanoparticle self-assembly makes it challenging to circumvent the instabilities that lead to aggregation and achieve crystallization under extreme conditions. By using non-base-pairing DNA as a model ligand instead of the typical base-pairing design for programmability, long-range 2D DNA-gold nanoparticle crystals can be obtained at extremely high salt concentrations and in a divalent salt environment. The interparticle spacings in these 2D nanoparticle crystals can be engineered and further tuned based on an empirical model incorporating the parameters of ligand length and ionic strength.
View Article and Find Full Text PDFThe discovery of RNA interference has revitalized the long ongoing pursuit of gene therapy for the treatment of diseases. Nevertheless, despite promising results from experimental studies, there remains a pressing need for the development of nanocarriers that are clinically-relevant, biocompatible, efficient, and that can be tailored to specific disease targets. This review surveys the broad spectrum of nanomaterials and their functional add-ons, and aims to provide a guide towards engineering nanocarriers for effective siRNA delivery.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
January 2011
The last two decades have witnessed the exponential development of DNA as a generic material instead of just a genetic material. The biological function, nanoscale geometry, biocompatibility, biodegradability, and molecular recognition capacity of DNA make it a promising candidate for the construction of novel functional nanomaterials. As a result, DNA has been recognized as one of the most appealing and versatile nanomaterial building blocks.
View Article and Find Full Text PDFNanotechnology has opened up new avenues towards ultra-sensitive, highly selective detection of biological molecules and toxic agents, as well as for therapeutic targeting and screening. Though the goals may seem singular, there is no universal method to identify or detect a molecular target. Each system is application-specific and must not only identify the target, but also transduce this interaction into a meaningful signal rapidly, reliably, and inexpensively.
View Article and Find Full Text PDFCell-free systems represent a promising approach to quickly and easily produce preparative amounts of proteins. However, it is still challenging to obtain high volumetric yields (>mg ml(-1)) of proteins from the present cell-free systems. This protocol presents a cell-free protein synthesis method using a novel DNA gel that dramatically increases protein yield compared with current systems.
View Article and Find Full Text PDF