Publications by authors named "Jason S Brusnahan"

Common oxidants used in chemical synthesis, including newly developed perruthenates, were evaluated in the context of understanding (and better appreciating) the sensitiveness and associated potential hazards of these reagents. Analysis using sealed cell differential scanning calorimetry (scDSC) facilitated Yoshida correlations, which were compared to impact sensitiveness and electrostatic discharge experiments (ESD), that enabled sensitiveness ranking. Methyltriphenylphoshonium perruthenate (MTP3, 8), isoamyltriphenylphosphonium perruthenate (ATP3, 7) and tetraphenylphosphonium perruthenate (TP3, 9) were found to be the most sensitive followed by 2-iodoxybenzoic acid (IBX, 2) and benzoyl peroxide (BPO, 10), whereas the most benign were observed to be Oxone (12), manganese dioxide (MnO , 13), and N-bromosuccinimide (NBS, 17).

View Article and Find Full Text PDF

As infrared seeking technology evolves, threats are better able to distinguish defensive infrared (IR) flares from true targets. Spectrally matched flares, which generally employ carbon-based fuels, are better able to decoy some advanced missiles by more closely mimicking the IR emission of the target. Cubane is a high-energy carbon-based scaffold which may be suitable for use as a fuel in spectrally matched flares.

View Article and Find Full Text PDF

The first total synthesis of the potent antimalarial 7,3'-linked naphthylisoquinoline alkaloid dioncophylline E (1) has been completed. The synthesis proceeds in 12 steps (longest linear sequence) and in 15 % overall yield. Key transformations include an ortho-arylation of a naphthol with an aryllead triacetate to construct the sterically hindered biaryl bond, and a three-step sequence to stereoselectively generate the trans-1,3-dimethyl-1,2,3,4-tetrahydroisoquinoline moiety.

View Article and Find Full Text PDF