The tumor suppressor CHEK2 encodes the serine/threonine protein kinase CHK2 which, upon DNA damage, is important for pausing the cell cycle, initiating DNA repair, and inducing apoptosis. CHK2 phosphorylation of the tumor suppressor BRCA1 is also important for mitotic spindle assembly and chromosomal stability. Consistent with its cell-cycle checkpoint role, both germline and somatic variants in CHEK2 have been linked to breast and other cancers.
View Article and Find Full Text PDFAs the adoption and scope of genetic testing continue to expand, interpreting the clinical significance of DNA sequence variants at scale remains a formidable challenge, with a high proportion classified as variants of uncertain significance (VUSs). Genetic testing laboratories have historically relied, in part, on functional data from academic literature to support variant classification. High-throughput functional assays or multiplex assays of variant effect (MAVEs), designed to assess the effects of DNA variants on protein stability and function, represent an important and increasingly available source of evidence for variant classification, but their potential is just beginning to be realized in clinical lab settings.
View Article and Find Full Text PDFPreterm birth (PTB), or the delivery prior to 37 weeks of gestation, is a significant cause of infant morbidity and mortality. Although twin studies estimate that maternal genetic contributions account for approximately 30% of the incidence of PTB, and other studies reported fetal gene polymorphism association, to date no consistent associations have been identified. In this study, we performed the largest reported genome-wide association study analysis on 1,349 cases of PTB and 12,595 ancestry-matched controls from the focusing on genomic fetal signals.
View Article and Find Full Text PDFPaired DNA and RNA profiling is increasingly employed in genomics research to uncover molecular mechanisms of disease and to explore personal genotype and phenotype correlations. Here, we introduce Simul-seq, a technique for the production of high-quality whole-genome and transcriptome sequencing libraries from small quantities of cells or tissues. We apply the method to laser-capture-microdissected esophageal adenocarcinoma tissue, revealing a highly aneuploid tumor genome with extensive blocks of increased homozygosity and corresponding increases in allele-specific expression.
View Article and Find Full Text PDFCancer sequencing studies have primarily identified cancer driver genes by the accumulation of protein-altering mutations. An improved method would be annotation independent, sensitive to unknown distributions of functions within proteins and inclusive of noncoding drivers. We employed density-based clustering methods in 21 tumor types to detect variably sized significantly mutated regions (SMRs).
View Article and Find Full Text PDFMycosis fungoides and Sézary syndrome comprise the majority of cutaneous T cell lymphomas (CTCLs), disorders notable for their clinical heterogeneity that can present in skin or peripheral blood. Effective treatment options for CTCL are limited, and the genetic basis of these T cell lymphomas remains incompletely characterized. Here we report recurrent point mutations and genomic gains of TNFRSF1B, encoding the tumor necrosis factor receptor TNFR2, in 18% of patients with mycosis fungoides and Sézary syndrome.
View Article and Find Full Text PDFAberrant regulation of gene expression in cancer can promote survival and proliferation of cancer cells. Here we integrate whole-genome sequencing data from The Cancer Genome Atlas (TCGA) for 436 patients from 8 cancer subtypes with ENCODE and other regulatory annotations to identify point mutations in regulatory regions. We find evidence for positive selection of mutations in transcription factor binding sites, consistent with these sites regulating important cancer cell functions.
View Article and Find Full Text PDFThe human genome sequence has profoundly altered our understanding of biology, human diversity, and disease. The path from the first draft sequence to our nascent era of personal genomes and genomic medicine has been made possible only because of the extraordinary advancements in DNA sequencing technologies over the past 10 years. Here, we discuss commonly used high-throughput sequencing platforms, the growing array of sequencing assays developed around them, as well as the challenges facing current sequencing platforms and their clinical application.
View Article and Find Full Text PDFProgenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation. DNA methylation provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1) maintains DNA methylation patterns after cellular replication.
View Article and Find Full Text PDFTo elucidate mechanisms of cancer progression, we generated inducible human neoplasia in three-dimensionally intact epithelial tissue. Gene expression profiling of both epithelia and stroma at specific time points during tumor progression revealed sequential enrichment of genes mediating discrete biologic functions in each tissue compartment. A core cancer progression signature was distilled using the increased signaling specificity of downstream oncogene effectors and subjected to network modeling.
View Article and Find Full Text PDFIntestinal ischemia-reperfusion (IR) injury is initiated when natural IgM Abs recognize neo-epitopes that are revealed on ischemic cells. The target molecules and mechanisms whereby these neo-epitopes become accessible to recognition are not well understood. Proposing that isolated intestinal epithelial cells (IEC) may carry IR-related neo-epitopes, we used in vitro IEC binding assays to screen hybridomas created from B cells of unmanipulated wild-type C57BL/6 mice.
View Article and Find Full Text PDFThe involvement of complement receptor 2 (CR2) in B cell tolerance and autoimmune disease has been revealed over the past decade or so. Our previous studies have established that mice prematurely expressing human CR2 under the control of a lambda light chain promoter (in particular the hCR2(high) line) have a marked deficit in their immune response to various antigens and fail to develop collagen-induced arthritis. This phenotype appears to be the result of irreversible changes in B cell signalling pathways and suggested that hCR2 expressing mice are protected from developing autoimmune disease.
View Article and Find Full Text PDFMice prematurely expressing human CR2 (hCR2) in the B cell lineage have a defective B cell ontogeny and immune response. Our recent analysis of this phenotype suggested that signaling through hCR2 and presumably mouse CD19 on the B cell surface, during bone marrow development, could result in the observed changes in B cell function in these mice. To test this hypothesis, we back crossed hCR2(high) transgenic mice onto the CD19(-/-) background.
View Article and Find Full Text PDFRas proteins are membrane-bound GTPases that play a central role in transmitting signals from the cell surface to the nucleus and affect a wide array of biological processes. The overall cellular response to Ras activation varies with cell type, experimental conditions, signal strength, and signal duration. Most current studies, however, rely on expression of constitutively active protein to study Ras function and thus ignore temporal variables, as well as signal strength.
View Article and Find Full Text PDFObjective: This study was undertaken to determine the definitions and beliefs regarding fetal station among pregnancy caregivers.
Study Design: Residents, nurses, and faculty at 5 teaching centers in Denver, Colo, were given surveys to determine what definitions were being used for fetal station and the perceived importance of these definitions.
Results: There were 243 responses from the 453 surveys.
Despite numerous attractive intracellular targets, protein therapeutics have been principally confined to the extracellular space due to the lack of a straightforward way to deliver functional polypeptides to the cell interior. Peptide sequences facilitating intracellular protein delivery have been identified; however, current strategies to apply them require problematic steps, such as generation of new in-frame fusion proteins, covalent chemical conjugation, and denaturation. We have developed a new approach to protein transfer into cells and tissues that relies on single-step decoration by cysteine-flanked, arginine-rich transporter peptides.
View Article and Find Full Text PDF