During the May-June 2016 International Cooperative Air Quality Field Study in Korea (KORUS-AQ), light synoptic meteorological forcing facilitated Seoul metropolitan pollution outflow to reach the remote Taehwa Research Forest (TRF) site and cause regulatory exceedances of ozone on 24 days. Two of these severe pollution events are thoroughly examined. The first, occurring on 17 May 2016, tracks transboundary pollution transport exiting eastern China and the Yellow Sea, traversing the Seoul Metropolitan Area (SMA), and then reaching TRF in the afternoon hours with severely polluted conditions.
View Article and Find Full Text PDFThe deliquescence relative humidities (DRH) as a function of temperature have been determined for several salts of atmospheric importance using humidity controlled thermogravimetric analysis (HTGA): sodium hydrogen oxalate monohydrate (NaHCO·HO), sodium oxalate (NaCO), sodium ammonium sulfate dihydrate (NaNHSO·2HO, lecontite), sodium hydrogen malonate monohydrate (NaHCHO·HO), sodium malonate monohydrate (NaCHO·HO), and ammonium hydrogen malonate (NHHCHO). The temperature-dependent onset DRH values (where a dry mixture begins to take up water) were also determined for mixtures of ammonium sulfate with malonic acid, and ammonium sulfate with sodium oxalates and sodium malonates, respectively. We demonstrate that the onset DRH is independent of the ratio of solids in the mixture.
View Article and Find Full Text PDFIn support of future satellite missions that aim to address the current shortcomings in measuring air quality from space, NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign was designed to enable exploration of relationships between column measurements of trace species relevant to air quality at high spatial and temporal resolution. In the DISCOVER-AQ data set, a modest correlation ( = 0.45) between ozone (O) and formaldehyde (CHO) column densities was observed.
View Article and Find Full Text PDFWe utilize a new experimental technique, humidity-controlled thermogravimetric analysis (HTGA), to determine temperature-dependent deliquescence relative humidities (DRH) and to determine the equilibrium concentration of a solution at a given temperature and relative humidity. To that end, we have investigated the malonic acid/water system determining the DRH and concentration/RH relationship in the temperature range 303-278 K. Excellent agreement is found with literature values for the DRH of malonic acid as a function of temperature and for the concentration/RH relationship at several temperatures.
View Article and Find Full Text PDFWe have studied the low temperature phase diagram and water activities of the ammonium sulfate/malic acid/water system using differential scanning calorimetry (DSC) and infrared spectroscopy (IR) of thin films. Using the results from our experiments we have mapped the ice primary phase region of the solid/liquid ternary phase diagram. In our DSC and IR experiments we observe ice nucleation in all samples and ammonium sulfate in some samples, which were cooled to 183 K.
View Article and Find Full Text PDFWe have studied the low temperature phase diagram and water activities of the ammonium sulfate/maleic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/maleic acid phase boundary as well as the ternary eutectic composition and temperature. We also compare our results to the predictions of the extended AIM aerosol thermodynamics model and find good agreement for the ice melting points in the ice primary phase field of this system; however significant differences were found with respect to phase boundaries, maleic acid dissolution, and ammonium sulfate dissolution.
View Article and Find Full Text PDFThe para-aminobiphenyl compound [(η(6)-C(6)H(5))(C(6)H(4)-4-NH(2))]Cr(CO)(3) (1) has an arene-phenyl dihedral angle of 38.01(6)°, as determined by single-crystal X-ray crystallography, and 34.7(11)°, as determined by DFT calculations.
View Article and Find Full Text PDF