Regulatory T cells, characterized by their expression of the transcription factor Forkhead box P3, are indispensable in maintaining immune homeostasis. The respiratory system is constantly exposed to many environmental challenges, making it susceptible to various insults and infections. Regulatory T cells play essential roles in maintaining homeostasis in the lung and promoting repair after injury.
View Article and Find Full Text PDFCD4 forkhead box P3 (FOXP3) regulatory T cells (Tregs) are essential in maintaining immune tolerance and suppressing excessive immune responses. Tregs also contribute to tissue repair processes distinct from their roles in immune suppression. For these reasons, Tregs are candidates for targeted therapies for inflammatory and autoimmune diseases, and in diseases where tissue damage occurs.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
December 2023
Am J Physiol Lung Cell Mol Physiol
February 2023
Sex as a biological variable is an essential element of preclinical research. Sex-specific differences in lung volume, alveolar number, body weight, and the relationship between lung and body weight result in important questions about generating equivalent injuries in males and females so that comparisons in their responses can be assessed. Few studies compare stimulus dosing methods for murine lung models investigating immune responses.
View Article and Find Full Text PDFA subset of individuals who recover from coronavirus disease 2019 (COVID-19) develop post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal tissue samples. The mouse-adapted SARS-CoV-2 strain MA10 produces an acute respiratory distress syndrome in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute to clinical recovery phases.
View Article and Find Full Text PDFReverse triggering is an underdiagnosed form of patient-ventilator asynchrony in which a passive ventilator-delivered breath triggers a neural response resulting in involuntary patient effort and diaphragmatic contraction. Reverse triggering may significantly impact patient outcomes, and the unique physiology underscores critical potential implications for drug-device-patient interactions. The purpose of this review is to summarize what is known of reverse triggering and its pharmacotherapeutic consequences, with a particular focus on describing reported cases, physiology, historical context, epidemiology, and management.
View Article and Find Full Text PDFCOVID-19 survivors develop post-acute sequelae of SARS-CoV-2 (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal samples. Mouse-adapted SARS-CoV-2 MA10 produces an acute respiratory distress syndrome (ARDS) in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute disease through clinical recovery.
View Article and Find Full Text PDFIntroduction: Cathelicidin is a vitamin D-regulated, antimicrobial peptide involved in the innate immune response of the airways. Reduced plasma cathelicidin concentrations are independently associated with worse pulmonary outcomes in current and former smokers. This study aimed to determine whether oral vitamin D supplementation in vitamin D-deficient current smokers increases plasma and bronchoalveolar lavage (BAL) cathelicidin levels.
View Article and Find Full Text PDFBackground: Foxp3 regulatory T cells (Tregs) play essential roles in immune homeostasis and repair of damaged lung tissue. We hypothesized that patients whose lung injury resolves quickly, as measured by time to liberation from mechanical ventilation, have a higher percentage of Tregs amongst CD4 T cells in either airway, bronchoalveolar lavage (BAL) or peripheral blood samples.
Methods: We prospectively enrolled patients with ARDS requiring mechanical ventilation and collected serial samples, the first within 72 h of ARDS diagnosis (day 0) and the second 48-96 h later (day 3).
Airway neutrophilia is correlated with disease severity in a number of chronic and acute pulmonary diseases, and dysregulation of neutrophil chemotaxis can lead to host tissue damage. The gene Zfp30 was previously identified as a candidate regulator of neutrophil recruitment to the lungs and secretion of CXCL1, a potent neutrophil chemokine, in a genome-wide mapping study using the Collaborative Cross. ZFP30 is a putative transcriptional repressor with a KRAB domain capable of inducing heterochromatin formation.
View Article and Find Full Text PDFBy enhancing tissue repair and modulating immune responses, Foxp3 regulatory T cells (Tregs) play essential roles in resolution from lung injury. The current study investigated the effects that Tregs exert directly or indirectly on the transcriptional profiles of type 2 alveolar epithelial (AT2) cells during resolution in an experimental model of acute lung injury. Purified AT2 cells were isolated from uninjured mice or mice recovering from LPS-induced lung injury, either in the presence of Tregs or in Treg-depleted mice, and transcriptome profiling identified differentially expressed genes.
View Article and Find Full Text PDFThe immunologic responses that occur early in the acute respiratory distress syndrome (ARDS) elicit immune-mediated damage. The mechanisms underlying the resolution of ARDS, particularly the role of signaling molecules in regulating immune cell kinetics, remain important questions. Th1-mediated responses can contribute to the pathogenesis of acute lung injury (ALI).
View Article and Find Full Text PDFRecovery from acute lung injury (ALI) is an active process. Foxp3+ Tregs contribute to recovery from ALI through modulating immune responses and enhancing alveolar epithelial proliferation and tissue repair. The current study investigates Treg transcriptional profiles during resolution of ALI in mice.
View Article and Find Full Text PDFThe complex role of neutrophils in modulating the inflammatory response is increasingly appreciated. Our studies profiled the expression of mRNAs and microRNAs (miRs) in lung neutrophils in mice during S. pneumoniae pneumonia and performed in depth in silico analyses.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
August 2017
Repair of the lung epithelium after injury is a critical component for resolution; however, the processes necessary to drive epithelial resolution are not clearly defined. Published data demonstrate that Foxp3 regulatory T cells (Tregs) enhance alveolar epithelial proliferation after injury, and Tregs in vitro directly promote type II alveolar epithelial cell (AT2) proliferation, in part by a contact-independent mechanism. Therefore, we sought to determine the contribution of Treg-specific expression of a growth factor that is known to be important in lung repair, keratinocyte growth factor (kgf).
View Article and Find Full Text PDFFlow cytometry is a powerful tool capable of simultaneously analyzing multiple parameters on a cell-by-cell basis. Lung tissue preparation for flow cytometry requires creation of a single-cell suspension, which often employs enzymatic and mechanical dissociation techniques. These practices may damage cells and cause cell death that is unrelated to the experimental conditions under study.
View Article and Find Full Text PDFObjective: Myocardial angiogenesis is presumed to play a role in RV adaptation to PH, though definitive evidence and functional correlations are lacking. We aimed to use definitive methods to correlate RV angiogenesis, hypertrophy, and function in a murine PH model.
Methods: Mice were exposed to CH for 21 days to induce PH and RV remodeling.
Early mobilization of critically ill patients with the acute respiratory distress syndrome (ARDS) has emerged as a therapeutic strategy that improves patient outcomes, such as the duration of mechanical ventilation and muscle strength. Despite the apparent efficacy of early mobility programs, their use in clinical practice is limited outside of specialized centers and clinical trials. To evaluate the mechanisms underlying mobility therapy, we exercised acute lung injury (ALI) mice for 2 days after the instillation of lipopolysaccharides into their lungs.
View Article and Find Full Text PDFAcute respiratory distress syndrome (ARDS) is a common and often fatal inflammatory lung condition without effective targeted therapies. Regulatory T cells (Tregs) resolve lung inflammation, but mechanisms that enhance Tregs to promote resolution of established damage remain unknown. DNA demethylation at the forkhead box protein 3 (Foxp3) locus and other key Treg loci typify the Treg lineage.
View Article and Find Full Text PDFOverwhelming lung inflammation frequently occurs following exposure to both direct infectious and noninfectious agents and is a leading cause of mortality worldwide. In that context, immunomodulatory strategies may be used to limit severity of impending organ damage. We sought to determine whether priming the lung by activating the immune system, or immunological priming, could accelerate resolution of severe lung inflammation.
View Article and Find Full Text PDFChronic obstructive pulmonary disease (COPD) causes significant morbidity and mortality. Cigarette smoke, the most common risk factor for COPD, induces airway and alveolar epithelial barrier permeability and initiates an innate immune response. Changes in abundance of aquaporin 5 (AQP5), a water channel, can affect epithelial permeability and immune response after cigarette smoke exposure.
View Article and Find Full Text PDF