Background: The engineering of many-component, synthetic biological systems is being made easier by the development of collections of reusable, standard biological parts. However, the complexity of biology makes it difficult to predict the extent to which such efforts will succeed. As a first practical example, the Registry of Standard Biological Parts started at MIT now maintains and distributes thousands of BioBrick standard biological parts.
View Article and Find Full Text PDFBMC Bioinformatics
December 2007
Background: Experimental studies of gene expression have identified some of the individual molecular components and elementary reactions that comprise and control cellular behavior. Given our current understanding of gene expression, and the goals of biotechnology research, both scientists and engineers would benefit from detailed simulators that can explicitly compute genome-wide expression levels as a function of individual molecular events, including the activities and interactions of molecules on DNA at single base pair resolution. However, for practical reasons including computational tractability, available simulators have not been able to represent genome-scale models of gene expression at this level of detail.
View Article and Find Full Text PDFBiological signaling networks process extracellular cues to control important cell decisions such as death-survival, growth-quiescence, and proliferation-differentiation. After receptor activation, intracellular signaling proteins change in abundance, modification state, and enzymatic activity. Many of the proteins in signaling networks have been identified, but it is not known how signaling molecules work together to control cell decisions.
View Article and Find Full Text PDF