Background: This Phase 1 study assessed the safety and efficacy of the Porcupine inhibitor, WNT974, in patients with advanced solid tumours.
Methods: Patients (n = 94) received oral WNT974 at doses of 5-30 mg once-daily, plus additional dosing schedules.
Results: The maximum tolerated dose was not established; the recommended dose for expansion was 10 mg once-daily.
Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV) associated cancer characterized by a poor prognosis and a high level of lymphocyte infiltrate. Genetic hallmarks of NPC are not completely known but include deletion of the p16 () locus and mutations in NF-κB pathway components, with a relatively low total mutational load. To better understand the genetic landscape, an integrated genomic analysis was performed using a large clinical cohort of treatment-naïve NPC tumor specimens.
View Article and Find Full Text PDFThe cyclin-dependent kinase (CDK) 4/6 inhibitor, ribociclib (LEE011), displayed preclinical activity in neuroblastoma and malignant rhabdoid tumor (MRT) models. In this phase I study, the maximum tolerated dose (MTD) and recommended phase II dose (RP2D), safety, pharmacokinetics (PK), and preliminary activity of single-agent ribociclib were investigated in pediatric patients with neuroblastoma, MRT, or other cyclin D-CDK4/6-INK4-retinoblastoma pathway-altered tumors. Patients (aged 1-21 years) received escalating once-daily oral doses of ribociclib (3-weeks-on/1-week-off).
View Article and Find Full Text PDFRunx1 is a well characterized transcription factor essential for hematopoietic differentiation and Runx1 mutations are the cause of leukemias. Runx1 is highly expressed in normal epithelium of most glands and recently has been associated with solid tumors. Notably, the function of Runx1 in the mammary gland and how it is involved in initiation and progression of breast cancer is still unclear.
View Article and Find Full Text PDFPurpose: Ribociclib (an oral, highly specific cyclin-dependent kinase 4/6 inhibitor) inhibits tumor growth in preclinical models with intact retinoblastoma protein (Rb). This first-in-human study investigated the MTD, recommended dose for expansion (RDE), safety, preliminary activity, pharmacokinetics, and pharmacodynamics of ribociclib in patients with Rb advanced solid tumors or lymphomas.
Experimental Design: Patients received escalating doses of ribociclib (3-weeks-on/1-week-off or continuous).
Cancer cells reprogram cellular metabolism to meet the demands of growth. Identification of the regulatory machinery that regulates cancer-specific metabolic changes may open new avenues for anti-cancer therapeutics. The epigenetic regulator BRG1 is a catalytic ATPase for some mammalian SWI/SNF chromatin remodeling enzymes.
View Article and Find Full Text PDFExperimental approaches to define the relationship between gene expression and nuclear matrix attachment regions (MARs) have given contrasting and method-specific results. We have developed a next generation sequencing strategy to identify MARs across the human genome (MAR-Seq). The method is based on crosslinking chromatin to its nuclear matrix attachment sites to minimize changes during biochemical processing.
View Article and Find Full Text PDFDosage compensation is an essential process that equalizes transcript levels of X-linked genes between sexes by forming a domain of coordinated gene expression. Throughout the evolution of Diptera, many different X-chromosomes acquired the ability to be dosage compensated. Once each newly evolved X-chromosome is targeted for dosage compensation in XY males, its active genes are upregulated two-fold to equalize gene expression with XX females.
View Article and Find Full Text PDFThe non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway.
View Article and Find Full Text PDFThe Brahma (BRM) and Brahma-related Gene 1 (BRG1) ATPases are highly conserved homologs that catalyze the chromatin remodeling functions of the multi-subunit human SWI/SNF chromatin remodeling enzymes in a mutually exclusive manner. SWI/SNF enzyme subunits are mutated or missing in many cancer types, but are overexpressed without apparent mutation in other cancers. Here, we report that both BRG1 and BRM are overexpressed in most primary breast cancers independent of the tumor's receptor status.
View Article and Find Full Text PDFIn tumor cells, two factors are abnormally increased that contribute to metastatic bone disease: Runx2, a transcription factor that promotes expression of metastasis related and osteolytic genes; and IL-11, a secreted osteolytic cytokine. Here, we addressed a compelling question: Does Runx2 regulate IL-11 gene expression? We find a positive correlation between Runx2, IL-11 and TGFβ1, a driver of the vicious cycle of metastatic bone disease, in prostate cancer (PC) cell lines representing early (LNCaP) and late (PC3) stage disease. Further, like Runx2 knockdown, IL-11 knockdown significantly reduced expression of several osteolytic factors.
View Article and Find Full Text PDFCancers exhibit extensive mutational heterogeneity, and the resulting long-tail phenomenon complicates the discovery of genes and pathways that are significantly mutated in cancer. We perform a pan-cancer analysis of mutated networks in 3,281 samples from 12 cancer types from The Cancer Genome Atlas (TCGA) using HotNet2, a new algorithm to find mutated subnetworks that overcomes the limitations of existing single-gene, pathway and network approaches. We identify 16 significantly mutated subnetworks that comprise well-known cancer signaling pathways as well as subnetworks with less characterized roles in cancer, including cohesin, condensin and others.
View Article and Find Full Text PDFBackground: For treatment and prevention of metastatic disease, one of the premier challenges is the identification of pathways and proteins to target for clinical intervention. Micro RNAs (miRNAs) are short, non-coding RNAs, which regulate cellular activities by either mRNA degradation or translational inhibition. Our studies focused on the invasive properties of hsa-mir30c based on its high expression in MDA-MB-231 metastatic cells and our bioinformatic analysis of the Cancer Genome Atlas that identified aberrant hsa-mir-30c to be associated with poor survival.
View Article and Find Full Text PDFThree-dimensional organization of chromatin is fundamental for transcriptional regulation. Tissue-specific transcriptional programs are orchestrated by transcription factors and epigenetic regulators. The RUNX2 transcription factor is required for differentiation of precursor cells into mature osteoblasts.
View Article and Find Full Text PDFBackground: Osteogenesis is a highly regulated developmental process and continues during the turnover and repair of mature bone. Runx2, the master regulator of osteoblastogenesis, directs a transcriptional program essential for bone formation through genetic and epigenetic mechanisms. While individual Runx2 gene targets have been identified, further insights into the broad spectrum of Runx2 functions required for osteogenesis are needed.
View Article and Find Full Text PDFHigh-throughput DNA sequencing is revolutionizing the study of cancer and enabling the measurement of the somatic mutations that drive cancer development. However, the resulting sequencing datasets are large and complex, obscuring the clinically important mutations in a background of errors, noise, and random mutations. Here, we review computational approaches to identify somatic mutations in cancer genome sequences and to distinguish the driver mutations that are responsible for cancer from random, passenger mutations.
View Article and Find Full Text PDFThe osteogenic and oncogenic transcription factor RUNX2 downregulates the RNA polymerase I (RNA Pol I)-mediated transcription of rRNAs and changes histone modifications associated with the rDNA repeat. However, the mechanisms by which RUNX2 suppresses rRNA transcription are not well understood. RUNX2 cofactors such as histone deacetylases (HDACs) play a key role in chromatin remodeling and regulation of gene transcription.
View Article and Find Full Text PDFIntroduction: Metastatic breast cancer cells frequently and ectopically express the transcription factor RUNX2, which normally attenuates proliferation and promotes maturation of osteoblasts. RUNX2 expression is inversely regulated with respect to cell growth in osteoblasts and deregulated in osteosarcoma cells.
Methods: Here, we addressed whether the functional relationship between cell growth and RUNX2 gene expression is maintained in breast cancer cells.
Epigenetic control of ribosomal RNA (rRNA) gene transcription by cell type-specific regulators, such as the osteogenic transcription factor Runx2, conveys cellular memory of growth and differentiation to progeny cells during mitosis. Here, we examined whether coregulatory proteins contribute to epigenetic functions that are mitotically transmitted by Runx2 in osteoblastic cells. We show that the transcriptional corepressor Transducin Like Enhancer-1 (TLE1) associates with rRNA genes during mitosis and interphase through interaction with Runx2.
View Article and Find Full Text PDF