Activating mutations in KRAS are the most frequent oncogenic alterations in cancer. The oncogenic hotspot position 12, located at the lip of the switch II pocket, offers a covalent attachment point for KRAS inhibitors. To date, KRAS inhibitors have been discovered by first covalently binding to the cysteine at position 12 and then optimizing pocket binding.
View Article and Find Full Text PDFProteins in the RAS family are important regulators of cellular signaling and, when mutated, can drive cancer pathogenesis. Despite considerable effort over the last 30 years, RAS proteins have proven to be recalcitrant therapeutic targets. One approach for modulating RAS signaling is to target proteins that interact with RAS, such as the guanine nucleotide exchange factor (GEF) son of sevenless homologue 1 (SOS1).
View Article and Find Full Text PDFK-RAS is mutated in approximately 30% of human cancers, resulting in increased RAS signaling and tumor growth. Thus, RAS is a highly validated therapeutic target, especially in tumors of the pancreas, lung and colon. Although directly targeting RAS has proven to be challenging, it may be possible to target other proteins involved in RAS signaling, such as the guanine nucleotide exchange factor Son of Sevenless (SOS).
View Article and Find Full Text PDFA stereoselective synthesis of a fully protected version of the disaccharide unit (2) of incednine (1) is described. The synthesis of 2 proceeds in 4.7% overall yield from commercially available allyl α-d-galactopyranoside over the longest linear sequence.
View Article and Find Full Text PDFA highly stereoselective synthesis of a model C(18)-C(35) spiroketal unit (7) of integramycin has been accomplished via an enantioselective stannyl-crotylboration reaction and an N-iodosuccinimide-mediated spiroketalization of 19a.
View Article and Find Full Text PDF