Publications by authors named "Jason Pusey"

This paper explores whether artificial ground-mobile systems exhibit a consistent regularity of relation among mass, power, and speed, similar to that which exists for biological organisms. To this end, we investigate an empirical allometric formula proposed in the 1980s for estimating the mechanical power expended by an organism of a given mass to move at a given speed, applicable over several orders of magnitude of mass, for a broad range of species, to determine if a comparable regularity applies to a range of vehicles. We show empirically that not only does a similar regularity apply to a wide variety of mobile systems; moreover, the formula is essentially the same, describing organisms and systems ranging from a roach (1 g) to a battle tank (35,000 kg).

View Article and Find Full Text PDF

The utility, efficiency, and reliability of legged robots has increased dramatically in recent years. Limbed robots are now capable of locomotion across a variety of terrains, however, achieving both rapid and efficient operation when ground conditions are complex or deformable is still challenging. Resistive terrains such as streams, snow, mud, littoral regions, and tall grass are an important class or set of complex and difficult terrain which are commonly found in the desired operating environments of legged robots.

View Article and Find Full Text PDF