Publications by authors named "Jason Podrabsky"

Embryo-environment interactions are of paramount importance during the development of all organisms, and impacts during this period can echo far into later stages of ontogeny. African annual fish of the genus live in temporary pools and their eggs survive the dry season in the dry bottom substrate of the pools by entering a facultative developmental arrest termed diapause. Uniquely among animals, the embryos (encased in eggs) may enter diapause at three different developmental stages.

View Article and Find Full Text PDF

Course-based undergraduate research experiences (CUREs) and inquiry-based curricula both expose students to the scientific process. CUREs additionally engage students in novel and scientifically relevant research, with the intention of providing an "authentic" research experience. However, we have little understanding of which course design elements impact students' beliefs that they are experiencing "authentic" research.

View Article and Find Full Text PDF

Abnormally increased angiotensin II activity related to maternal angiotensinogen (AGT) genetic variants, or aberrant receptor activation, is associated with small-for-gestational-age babies and abnormal uterine spiral artery remodeling in humans. Our group studies a murine AGT gene titration transgenic (TG; 3-copies of the AGT gene) model, which has a 20% increase in AGT expression mimicking a common human AGT genetic variant (A[-6]G) associated with intrauterine growth restriction (IUGR) and spiral artery pathology. We hypothesized that aberrant maternal AGT expression impacts pregnancy-induced uterine spiral artery angiogenesis in this mouse model leading to IUGR.

View Article and Find Full Text PDF

In most vertebrates, a lack of oxygen quickly leads to irreparable damages to vital organs, such as the brain and heart. However, there are some vertebrates that have evolved mechanisms to survive periods of no oxygen (anoxia). The annual killifish () survives in ephemeral ponds in the coastal deserts of Venezuela and their embryos have the remarkable ability to tolerate anoxia for months.

View Article and Find Full Text PDF

Annual killifish survive in temporary ponds by producing drought-tolerant embryos that can enter metabolic dormancy (diapause). Survival of dehydration stress is achieved through severe reduction of evaporative water loss. We assessed dehydration stress tolerance in diapausing and developing embryos.

View Article and Find Full Text PDF

The annual killifish, , survives in ephemeral ponds in the coastal deserts of Venezuela. Persistence through the dry season is dependent on drought-resistant eggs embedded in the pond sediments during the rainy season. The ability of these embryos to enter drastic metabolic dormancy (diapause) during normal development enables to survive conditions lethal to most other aquatic vertebrates; critical to the survival of the species is the ability of embryos to survive months and perhaps years without access to liquid water.

View Article and Find Full Text PDF

Embryos of the annual killifish Austrofundulus limnaeus are the most anoxia-tolerant vertebrate. Annual killifish inhabit ephemeral ponds, producing drought and anoxia-tolerant embryos, which allows the species to persist generation after generation. Anoxia tolerance and physiology vary by developmental stage, creating a unique opportunity for comparative study within the species.

View Article and Find Full Text PDF

Embryos of can tolerate extreme environmental stresses by entering into a state of metabolic and developmental arrest known as diapause. Oxidative stress is ubiquitous in aerobic organisms and the unique biology and ecology of likely results in frequent and repeated exposures to oxidative stress during development. The antioxidant capacity of was explored during development by measuring antioxidant capacity due to small molecules and several enzymatic antioxidant systems.

View Article and Find Full Text PDF

Most animal cells rely on aerobic metabolism for survival and are damaged or die within minutes without oxygen. Embryos of the annual killifish Austrofundulus limnaeus, however, survive months without oxygen. Determining how their cells survive without oxygen has the potential to revolutionize our understanding of the cellular mechanisms supporting vertebrate anoxia tolerance and the evolution of such tolerance.

View Article and Find Full Text PDF

The mechanisms that integrate environmental signals into developmental programs remain largely uncharacterized. Nuclear receptors (NRs) are ligand-regulated transcription factors that orchestrate the expression of complex phenotypes. The vitamin D receptor (VDR) is an NR activated by 1α,25-dihydroxyvitamin D [1,25(OH)D], a hormone derived from 7-dehydrocholesterol (7-DHC).

View Article and Find Full Text PDF

Embryonic development of Austrofundulus limnaeus can occur along two phenotypic trajectories that are physiologically and biochemically distinct. Phenotype appears to be influenced by maternal provisioning based on the observation that young females produce predominately non-diapausing embryos and older females produce mostly diapausing embryos. Embryonic incubation temperature can override this pattern and alter trajectory.

View Article and Find Full Text PDF

Extreme anoxia tolerance requires a metabolic depression whose modulation could involve small non-coding RNAs (small ncRNAs), which are specific, rapid, and reversible regulators of gene expression. A previous study of small ncRNA expression in embryos of the annual killifish , the most anoxia-tolerant vertebrate known, revealed a specific expression pattern of small ncRNAs that could play important roles in anoxia tolerance. Here, we conduct a comparative study on the presence and expression of small ncRNAs in the most anoxia-tolerant representatives of several major vertebrate lineages, to investigate the evolution of and mechanisms supporting extreme anoxia tolerance.

View Article and Find Full Text PDF
Article Synopsis
  • The annual killifish Austrofundulus limnaeus is being studied for its unique adaptations to extreme conditions like desiccation and anoxia in ephemeral ponds in Venezuela.
  • Researchers have successfully sequenced the first draft genome of A. limnaeus, utilizing advanced genomic assembly and annotation techniques, showing it has high completeness in gene regions.
  • This genome will serve as an important resource for understanding the genetic basis of stress tolerance and evolutionary mechanisms in annual killifishes, beneficial for exploring broader vertebrate physiology and evolution.
View Article and Find Full Text PDF

Small noncoding RNAs (sncRNA) have recently emerged as specific and rapid regulators of gene expression, involved in a myriad of cellular and organismal processes. MicroRNAs, a class of sncRNAs, are differentially expressed in diverse taxa in response to environmental stress, including anoxia. In most vertebrates, a brief period of oxygen deprivation results in severe tissue damage or death.

View Article and Find Full Text PDF

Annual killifishes exhibit a number of unique life history characters including the occurrence of embryonic diapause, unique cell movements associated with dispersion and subsequent reaggregation of the embryonic blastomeres, and a short post-embryonic life span. Insulin-like growth factor (IGF) signaling is known to play a role in the regulation of metabolic dormancy in a number of animals but has not been explored in annual killifishes. The abundance of IGF proteins during development and the developmental effects of blocking IGF signaling by pharmacological inhibition of the insulin-like growth factor I receptor (IGF1R) were explored in embryos of the annual killifish Blocking of IGF signaling in embryos that would normally escape entrance into diapause resulted in a phenotype that was remarkably similar to that of embryos entering diapause.

View Article and Find Full Text PDF

Background: Austrofundulus limnaeus is an annual killifish from the Maracaibo basin of Venezuela. Annual killifishes are unique among vertebrates in their ability to enter into a state of dormancy at up to three distinct developmental stages termed diapause I, II, and III. These embryos are tolerant of a wide variety of environmental stresses and develop relatively slowly compared with nonannual fishes.

View Article and Find Full Text PDF

Background: Genotype and environment can interact during development to produce novel adaptive traits that support life in extreme conditions. The development of the annual killifish is unique among vertebrates because the embryos have distinct cell movements that separate epiboly from axis formation during early development, can enter into a state of metabolic dormancy known as diapause and can survive extreme environmental conditions. The ability to enter into diapause can be maternally programmed, with young females producing embryos that do not enter into diapause.

View Article and Find Full Text PDF

Killifishes survive and persist in extreme environments by exploiting both aquatic and terrestrial habitats for egg deposition, and by adjusting the length of development to match availability of water to support larval growth and maturation. Annual killifishes persist in ephemeral bodies of water through the production of drought-tolerant embryos. Survival of the environmental stresses associated with their highly variable and seasonal habitat is supported by their ability to enter into at least two states of metabolic and developmental dormancy, diapause or quiescence.

View Article and Find Full Text PDF

The annual killifish Austrofundulus limnaeus inhabits ephemeral ponds in regions of Venezuela, South America. Permanent populations of A. limnaeus are maintained by production of stress-tolerant embryos that are able to persist in the desiccated sediment.

View Article and Find Full Text PDF

Embryos of the annual killifish Austrofundulus limnaeus are routinely exposed to oxygen limitation during development and are extremely tolerant of anoxia. Importantly, tolerance of anoxia is not strictly associated with entrance into metabolic dormancy associated with diapause II, but rather any embryo will respond to anoxia by entering into a state of anoxia-induced quiescence. Hypoxia causes a reduction in the rate of development, reduced heart rates, and reduced capacities for metabolic enzyme activity in both aerobic and anaerobic pathways.

View Article and Find Full Text PDF

Life cycle delays are beneficial for opportunistic species encountering suboptimal environments. Many animals display a programmed arrest of development (diapause) at some stage(s) of their development, and the diapause state may or may not be associated with some degree of metabolic depression. In this review, we will evaluate current advancements in our understanding of the mechanisms responsible for the remarkable phenotype, as well as environmental cues that signal entry and termination of the state.

View Article and Find Full Text PDF

Diapause is a programmed state of developmental arrest that typically occurs as part of the natural developmental progression of organisms that inhabit seasonal environments. The brine shrimp Artemia franciscana and annual killifish Austrofundulus limnaeus share strikingly similar life histories that include embryonic diapause as a means to synchronize the growth and reproduction phases of their life history to favorable environmental conditions. In both species, respiration rate is severely depressed during diapause and thus alterations in mitochondrial physiology are a key component of the suite of characters associated with cessation of development.

View Article and Find Full Text PDF

Background: The cellular signaling mechanisms and morphogenic movements involved in axis formation and gastrulation are well conserved between vertebrates. In nearly all described fish, gastrulation and the initial patterning of the embryonic axis occur concurrently with epiboly. However, annual killifish may be an exception to this norm.

View Article and Find Full Text PDF