Chimeric antigen receptors (CARs) are synthetic receptors that usually redirect T cells to surface antigens independent of human leukocyte antigen (HLA). Here, we investigated a T cell receptor-like CAR based on an antibody that recognizes HLA-A*0201 presenting a peptide epitope derived from the cancer-testis antigen NY-ESO-1. We hypothesized that this CAR would efficiently redirect transduced T cells in an HLA-restricted, antigen-specific manner.
View Article and Find Full Text PDFT cell engineering is a powerful means to rapidly generate anti-tumor T cells. The costimulatory properties of second-generation chimeric antigen receptors (CARs) determine the overall potency of adoptively transferred T cells. Using an in vivo "stress test" to challenge CD19-targeted T cells, we studied the functionality and persistence imparted by seven different CAR structures providing CD28 and/or 4-1BB costimulation.
View Article and Find Full Text PDFAdoptive T cell therapy represents a promising treatment for cancer. Human T cells engineered to express a chimeric antigen receptor (CAR) recognize and kill tumor cells in a MHC-unrestricted manner and persist in vivo when the CAR includes a CD28 costimulatory domain. However, the intensity of the CAR-mediated CD28 activation signal and its regulation by the CTLA-4 checkpoint are unknown.
View Article and Find Full Text PDFTranslating the recent success of chimeric antigen receptor (CAR) T cell therapy for hematological malignancies to solid tumors will necessitate overcoming several obstacles, including inefficient T cell tumor infiltration and insufficient functional persistence. Taking advantage of an orthotopic model that faithfully mimics human pleural malignancy, we evaluated two routes of administration of mesothelin-targeted T cells using the M28z CAR. We found that intrapleurally administered CAR T cells vastly outperformed systemically infused T cells, requiring 30-fold fewer M28z T cells to induce long-term complete remissions.
View Article and Find Full Text PDFTo enhance the strength of activation afforded by tumor antigen-specific receptors, we investigated the effect of adding combined CD28 and 4-1BB costimulatory signaling domains to a chimeric antigen receptor (CAR) specific for prostate-specific membrane antigen (PSMA). Having transferred receptors encompassing the CD28, 4-1BB, and/or CD3zeta cytoplasmic domains in primary human CD8(+) T cells, we find that the P28BBz receptor, which includes all three signaling domains, is superior to receptors that only include one or two of these domains in promoting cytokine release, in vivo T-cell survival and tumor elimination following intravenous T-cell administration to tumor-bearing severe combined immunodeficient (SCID)/beige mice. Upon in vitro exposure to PSMA, the P28BBZ receptor-induced the strongest PI(3)Kinase/Akt activation and Bcl-X(L) expression, and the least apoptosis in transduced peripheral blood CD8(+) T cells.
View Article and Find Full Text PDFRadiation-induced inhibition of rapamycin-sensitive pathway and its effect on the cellular response to radiation were studied in the human breast cancer cell line MCF-7. Both radiation and rapamycin shared molecular targets and induced similar physiologic responses. Each of these treatments increased immunostaining of mammalian target of rapamycin (mTOR) in the nucleus, and radiation led to decreased phosphorylation of its autophosphorylation site Ser2481.
View Article and Find Full Text PDFPostnatal T lymphocyte differentiation in the thymus is a multistage process involving serial waves of lineage specification, proliferative expansion, and survival/cell death decisions. Although these are believed to originate from signals derived from various thymic stromal cells, the ultimate consequence of these signals is to induce the transcriptional changes that are definitive of each step. To help to characterize this process, high density microarrays were used to analyze transcription factor gene expression in RNA derived from progenitors at each stage of T lymphopoietic differentiation, and the results were validated by a number of appropriate methods.
View Article and Find Full Text PDFT cell differentiation in the thymus depends on sequential interactions between lymphoid progenitors and stromal cells in discrete regions of the cortex. Here we show that CXCL12/CXCR4 signaling is absolutely required for proper localization of early progenitors into the cortex and thus for successful steady state differentiation. All early progenitors in the thymus express CXCR4, and its ligand (CXCL12) is expressed only by stromal cells in the cortex, where early progenitors are found.
View Article and Find Full Text PDF