Drug development is systemically inefficient. Research and development costs for novel therapeutics average hundreds of millions to billions of dollars, with the overall likelihood of approval estimated to be as low as 6.7% for oncology drugs.
View Article and Find Full Text PDFPurpose: Cancer drug development is currently limited by a paradigm of preclinical evaluation that does not adequately recapitulate the complexity of the intact human tumor microenvironment (TME). To overcome this, we combined trackable intratumor microdosing (CIVO) with spatial biology readouts to directly assess drug effects in patient tumors in situ.
Experimental Design: In a first-of-its-kind phase 0 clinical trial, we explored the effects of an investigational stage SUMOylation-activating enzyme (SAE) inhibitor, subasumstat (TAK-981) in 12 patients with head and neck carcinoma (HNC).
The vision of a precision medicine-guided approach to novel cancer drug development is challenged by high intratumor heterogeneity and interpatient diversity. This complexity is rarely modeled accurately during preclinical drug development, hampering predictions of clinical drug efficacy. To address this issue, we developed Comparative In Vivo Oncology (CIVO) arrayed microinjection technology to test tumor responsiveness to simultaneous microdoses of multiple drugs directly in a patient's tumor.
View Article and Find Full Text PDFWhile advances in high-throughput screening have resulted in increased ability to identify synergistic anti-cancer drug combinations, validation of drug synergy in the in vivo setting and prioritization of combinations for clinical development remain low-throughput and resource intensive. Furthermore, there is currently no viable method for prospectively assessing drug synergy directly in human patients in order to potentially tailor therapies. To address these issues we have employed the previously described CIVO platform and developed a quantitative approach for investigating multiple combination hypotheses simultaneously in single living tumors.
View Article and Find Full Text PDFA fundamental problem in cancer drug development is that antitumor efficacy in preclinical cancer models does not translate faithfully to patient outcomes. Much of early cancer drug discovery is performed under in vitro conditions in cell-based models that poorly represent actual malignancies. To address this inconsistency, we have developed a technology platform called CIVO, which enables simultaneous assessment of up to eight drugs or drug combinations within a single solid tumor in vivo.
View Article and Find Full Text PDFWe developed a versatile, high-throughput genetic screening strategy by coupling gene mutagenesis and expression profiling technologies. Using a retroviral gene-trap vector optimized for efficient mutagenesis and cloning, we randomly disrupted genes in mouse embryonic stem (ES) cells and amplified them to construct a cDNA microarray. With this gene-trap array, we show that transcriptional target genes of platelet-derived growth factor (PDGF) can be efficiently and reliably identified in physiologically relevant cells and are immediately accessible to genetic studies to determine their in vivo roles and relative contributions to PDGF-regulated developmental processes.
View Article and Find Full Text PDF