3D bioprinting is transforming tissue engineering in medicine by providing novel methods that are precise and highly customizable to create biological tissues. The selection of a "cell ink", a printable formulation, is an integral part of adapting 3D bioprinting processes to allow for process optimization and customization related to the target tissue. Bioprinting hydrogels allows for tailorable material, physical, chemical, and biological properties of the cell ink and is suited for biomedical applications.
View Article and Find Full Text PDFThe purpose of this review is to highlight the potential role for the cluster of differentiation protein 14 (CD14), a co-receptor for toll-like receptor (TLR) signals and as a proximal target for innate immune signals induced during procurement of solid organs for transplantation. CD14 facilitates the detection of multiple pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) by various TLRs. All solid organs used for transplantation are exposed to PAMPs and DAMPs generated during the course of procurement that inevitably trigger injurious inflammatory responses in the donor organ.
View Article and Find Full Text PDFThe stomach has unique embryologic and anatomic properties, making the study of the parietal cell technically challenging. Numerous individuals have devoted decades of research to unraveling the pathophysiological basis of this cell type. Here, we perform a scoping review of novel and methodology pertaining to the parietal cell.
View Article and Find Full Text PDF