Mice lacking the p27Kip1 Cdk inhibitor, like mice lacking Rb, develop pituitary tumors involving pars intermedia melanotrophs, yet p27(Kip1) tumors are genetically distinct from Rb derived tumors as they exhibit haploid insufficiency. We compared tumors from mice with p27( Kip1) constitutive and tissue specific null mutations to tumors arising in tissue specific Rb knockout mice with the aim of determining whether they are distinguished by quantitative or qualitative differences. The rate of p27Kip1 knockout tumor development was strongly influenced by strain background due to polygenic strain modifiers in the C57BL/6J versus 129S4 strains but, unlike a prior report of Rb mutants, this impacted tumor incidence but not the tumor spectrum.
View Article and Find Full Text PDFLoss of the cyclin-dependent kinase inhibitor p27(Kip1) leads to an overall increase in animal growth, pituitary tumors, and hyperplasia of hematopoietic organs, yet it is unknown whether all cells function autonomously in response to p27(Kip1) activity or whether certain cells take cues from their neighbors. In addition, there is currently no genetic evidence that tumor suppression by p27(Kip1) is cell-autonomous because biallelic gene inactivation is absent from tumors arising in p27(Kip1) hemizygous mice. We have addressed these questions with tissue-specific targeted mouse mutants and radiation chimeras.
View Article and Find Full Text PDFGene therapy utilizing lipid-based delivery systems holds tremendous promise for the treatment of cancer. However, due to the potential adverse inflammatory and/or immune effects upon systemic administration, treatments thus far have been predominantly limited to intratumoral or regional treatment. Previous studies from our group have demonstrated the antitumor efficacy of systemically administered, folate-targeted, lipid-protamine-DNA complexes (LPD-PEG-Folate) against breast cancer using an immunodeficient xenogenic murine model.
View Article and Find Full Text PDF