Methane pyrolysis is a process used to generate hydrogen gas and carbon black without the creation of carbon dioxide. Methane pyrolysis in a constant volume batch reactor was investigated at temperatures of 892, 1093, and 1292 K with reaction times of 15, 30, 60, 180, and 300 s at an initial pressure of 399 kPa. A quartz vessel (32 mL) was placed inside an oven where it was heated to high temperatures.
View Article and Find Full Text PDFDetermining the viral load and infectivity of SARS-CoV-2 in macroscopic respiratory droplets, bioaerosols, and other bodily fluids and secretions is important for identifying transmission modes, assessing risks and informing public health guidelines. Here we show that viral load of SARS-CoV-2 Ribonucleic Acid (RNA) in participants' naso-pharyngeal (NP) swabs positively correlated with RNA viral load they emitted in both droplets >10 [Formula: see text] and bioaerosols <10 [Formula: see text] directly captured during the combined expiratory activities of breathing, speaking and coughing using a standardized protocol, although the NP swabs had [Formula: see text] 10[Formula: see text] more RNA on average. By identifying highly-infectious individuals (maximum of 18,000 PFU/mL in NP), we retrieved higher numbers of SARS-CoV-2 RNA gene copies in bioaerosol samples (maximum of 4.
View Article and Find Full Text PDFRecent increases in marijuana use and legalization without adequate knowledge of the risks necessitate the characterization of the billions of nanoparticles contained in each puff of smoke. Tobacco smoke offers a benchmark given that it has been extensively studied. Tobacco and marijuana smoke particles are quantitatively similar in volatility, shape, density and number concentration, albeit with differences in size, total mass and chemical composition.
View Article and Find Full Text PDFThe restructuring of monodisperse soot aggregates due to coatings of secondary organic aerosol (SOA) was investigated in a series of photo-oxidation chamber experiments. Soot aggregates were generated by one of three sources (an ethylene premixed burner, a methane inverted diffusion burner, or a diesel generator), treated by denuding, size-selected by a differential mobility analyzer, and injected into a smog chamber, where they were exposed to the photo-oxidation products of p-xylene, which partitioned to form SOA coatings. The evolution of aggregates from their initial to final morphologies was investigated in situ by mobility and mass measurements and ex situ by transmission electron microscopy.
View Article and Find Full Text PDFRestructuring of monodisperse soot aggregates due to coatings of secondary organic aerosol (SOA) derived from hydroxyl radical-initiated oxidation of toluene, p-xylene, ethylbenzene, and benzene was investigated in a series of photo-oxidation (smog) chamber experiments. Soot aggregates were generated by combustion of ethylene using a McKenna burner, treated by denuding, size-selected by a differential mobility analyzer, and injected into a smog chamber, where they were exposed to low vapor pressure products of aromatic hydrocarbon oxidation, which formed SOA coatings. Aggregate restructuring began once a threshold coating mass was reached, and the degree of the subsequent restructuring increased with mass growth factor.
View Article and Find Full Text PDFThe performance of pressurized metered-dose inhalers (pMDIs) under a variety of temperature conditions was investigated. The effects of both inhaler temperature and ambient temperature were considered. The inhaler temperature ranged from -13.
View Article and Find Full Text PDFThe purpose of the study is to understand the effect of altitude on the performance of selected pressurized metered dose inhalers (pMDIs) and dry powder inhalers (DPIs). A testing apparatus that created consistent breath profiles through the Alberta Idealized Throat was designed to test five pMDIs and two DPIs at altitudes of 670, 2450, 3260, and 4300 m. Both gravimetric and chemical assays were conducted to determine the in vitro lung dose.
View Article and Find Full Text PDFBackground: The fraction of inhaled particles depositing in the nasal extrathoracic airways determines the amount of particles delivered to the lungs of infants. Electrostatic charge on particles can affect this deposition, and for this reason, deposition of charged aerosol particles in the Alberta Idealized Infant nasal geometry is examined.
Methods: Charged aerosol particles were generated via Plateau-Rayleigh jet breakup atomization with induction charging.
Jacobson argues that our statement that "many climate models may overestimate warming by BC" has not been demonstrated. Jacobson challenges our results on the basis that we have misinterpreted some model results, omitted optical focusing under high relative humidity conditions and by involatile components, and because our measurements consist of only two locations over short atmospheric time periods. We address each of these arguments, acknowledging important issues and clarifying some misconceptions, and stand by our observations.
View Article and Find Full Text PDFAtmospheric black carbon (BC) warms Earth's climate, and its reduction has been targeted for near-term climate change mitigation. Models that include forcing by BC assume internal mixing with non-BC aerosol components that enhance BC absorption, often by a factor of ~2; such model estimates have yet to be clearly validated through atmospheric observations. Here, direct in situ measurements of BC absorption enhancements (E(abs)) and mixing state are reported for two California regions.
View Article and Find Full Text PDF