We address new measurement challenges relating to 3D printing in metal powder using the powder bed fusion technique. Using a combination of confocal microscopy principles and fast, sensitive mid-infrared collection techniques, we present a compact and versatile method of measuring and analyzing broadband thermal emissions from the vicinity of the molten metal pool during the additive manufacturing process. We demonstrate the benefits of this instrumentation and potential for scientific research as well as in situ monitoring.
View Article and Find Full Text PDFThe SARS-CoV-2 global pandemic has produced widespread shortages of certified air-filtering personal protection equipment and an acute need for rapid evaluation of breathability and filtration efficiency of proposed alternative solutions. Here, we describe experimental efforts to nondestructively quantify three vital characteristics of mask approaches: breathability, material filtration effectiveness, and sensitivity to fit. We focus on protection against aqueous aerosols >0.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2020
Simple cubic 'open' perovskite ScF stands out among trifluoride materials in its large, isotropic negative thermal expansion (NTE), but also its proximity of its zero-temperature state to a structural phase transition. Here we report a temperature- and frequency-dependent lattice dynamical study of Brillouin zone center lattice excitations of single crystals of ScF using infrared reflectivity measurements. In addition to quantifying the mode strengths and energies in single crystals of this interesting material, we also find strong evidence for multiphonon absorption processes which excite the zone-edge incipient soft modes associated with NTE and the structural quantum phase transition.
View Article and Find Full Text PDFNegative thermal expansion (NTE) describes the anomalous propensity of materials to shrink when heated. Since its discovery, the NTE effect has been found in a wide variety of materials with an array of magnetic, electronic and structural properties. In some cases, the NTE originates from phase competition arising from the electronic or magnetic degrees of freedom but we here focus on a particular class of NTE which originates from intrinsic dynamical origins related to the lattice degrees of freedom, a property we term negative thermal expansion (SNTE).
View Article and Find Full Text PDFWe present a magneto-optical study of the three-dimensional topological insulator, strained HgTe, using a technique which capitalizes on advantages of time-domain spectroscopy to amplify the signal from the surface states. This measurement delivers valuable and precise information regarding the surface-state dispersion within <1 meV of the Fermi level. The technique is highly suitable for the pursuit of the topological magnetoelectric effect and axion electrodynamics.
View Article and Find Full Text PDFAn infrared study of the phonon spectra of ZrW2O8 as a function of temperature which includes the low-energy (2-10 meV) region relevant to negative thermal expansion is reported and discussed in the context of specific heat and neutron density of state results. The prevalence of infrared active phonons at low energy and their observed temperature dependence are highly unusual and indicative of exotic low-energy lattice dynamics. Eigenvector calculations indicate a mixing of librational and translational motion within each low-frequency IR mode.
View Article and Find Full Text PDFTheoretical work on Kondo systems predicts universality in the scaling of observable quantities with the Kondo temperature, T(K). Here we report infrared-frequency optical response measurements of the correlated system YbIn(1-x)AgxCu4. We observe that x-dependent variations in the frequency and strength of a low-energy excitation are related to the x-dependent Kondo temperature.
View Article and Find Full Text PDF