Although lab-coat genomics scientists are highly skilled and involved in pioneering work, few studies have examined their perceptions on what they do, and how they relate with others in interdisciplinary work. Recognizing that gap, we were curious to talk with scientists about their current work and positionalities related to the use of genomics for bioremediation. Using unstructured open-ended interviews and thematic analysis, we interviewed researchers with diverse genomics-related expertise.
View Article and Find Full Text PDFMechanisms of computation in sensorimotor cortex must be flexible and robust to support skilled motor behavior. Patterns of neuronal coactivity emerge as a result of computational processes. Pairwise spike-time statistical relationships, across the population, can be summarized as a functional network (FN) which retains single-unit properties.
View Article and Find Full Text PDFMechanisms of computation in sensorimotor cortex must be flexible and robust to support skilled motor behavior. Patterns of neuronal coactivity emerge as a result of computational processes. Pairwise spike-time statistical relationships, across the population, can be summarized as a functional network (FN) which retains single-unit properties.
View Article and Find Full Text PDFWhen multiple stimuli appear together in the receptive field of a visual cortical neuron, the response is typically close to the average of that neuron's response to each individual stimulus. The departure from a linear sum of each individual response is referred to as normalization. In mammals, normalization has been best characterized in the visual cortex of macaques and cats.
View Article and Find Full Text PDFSkillful, voluntary movements are underpinned by computations performed by networks of interconnected neurons in the primary motor cortex (M1). Computations are reflected by patterns of coactivity between neurons. Using pairwise spike time statistics, coactivity can be summarized as a ().
View Article and Find Full Text PDFWhen multiple stimuli appear together in the receptive field of a visual cortical neuron, the response is typically close to the average of that neuron's response to each individual stimulus. The departure from a linear sum of each individual response is referred to as normalization. In mammals, normalization has been best characterized in the visual cortex of macaques and cats.
View Article and Find Full Text PDFComplex systems can be defined by "sloppy" dimensions, meaning that their behavior is unmodified by large changes to specific parameter combinations, and "stiff" dimensions, whose change results in considerable behavioral modification. In the neocortex, sloppiness in synaptic architectures would be crucial to allow for the maintenance of asynchronous irregular spiking dynamics with low firing rates despite a diversity of inputs, states, and short- and long-term plasticity. Using simulations on neural networks with first-order spiking statistics matched to firing in murine visual cortex while varying connectivity parameters, we determined the stiff and sloppy parameters of synaptic architectures across three classes of input (brief, continuous, and cyclical).
View Article and Find Full Text PDFHow circuits self-assemble starting from neuronal stem cells is a fundamental question in developmental neurobiology. Here, we addressed how neurons from different stem cell lineages wire with each other to form a specific circuit motif. In larvae, we combined developmental genetics (twin-spot mosaic analysis with a repressible cell marker, multi-color flip out, permanent labeling) with circuit analysis (calcium imaging, connectomics, network science).
View Article and Find Full Text PDFAccurate and reliable quantification of oligonucleotides can be difficult, which has led to an increased focus on bioanalytical methods for more robust analyses. Recent advances toward mitigating sample losses on liquid chromatography (LC) systems have produced recovery advantages for oligonucleotide separations. LC instruments and columns constructed from MP35N metal alloy and stainless steel columns were compared against LC hardware modified with hybrid inorganic-organic silica surfaces.
View Article and Find Full Text PDFMarmosets are an increasingly important model system for neuroscience in part due to genetic tractability and enhanced cortical accessibility, due to a lissencephalic neocortex. However, many of the techniques generally employed to record neural activity in primates inhibit the expression of natural behaviors in marmosets precluding neurophysiological insights. To address this challenge, we have developed methods for recording neural population activity in unrestrained marmosets across multiple ethological behaviors, multiple brain states, and over multiple years.
View Article and Find Full Text PDFA basic-yet nontrivial-function which neocortical circuitry must satisfy is the ability to maintain stable spiking activity over time. Stable neocortical activity is asynchronous, critical, and low rate, and these features of spiking dynamics contribute to efficient computation and optimal information propagation. However, it remains unclear how neocortex maintains this asynchronous spiking regime.
View Article and Find Full Text PDFUnbiased and dense sampling of large populations of layer 2/3 pyramidal neurons in mouse primary visual cortex (V1) reveals two functional sub-populations: neurons tuned and untuned to drifting gratings. Whether functional interactions between these two groups contribute to the representation of visual stimuli is unclear. To examine these interactions, we summarize the population partial pairwise correlation structure as a directed and weighted graph.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2020
Generally behavioral neuroscience studies of the common marmoset employ adaptations of well-established training methods used with macaque monkeys. However, in many cases these approaches do not readily generalize to marmosets indicating a need for alternatives. Here we present the development of one such alternate: a platform for semiautomated, voluntary in-home cage behavioral training that allows for the study of naturalistic behaviors.
View Article and Find Full Text PDFPLoS Comput Biol
January 2020
To develop a complete description of sensory encoding, it is necessary to account for trial-to-trial variability in cortical neurons. Using a linear model with terms corresponding to the visual stimulus, mouse running speed, and experimentally measured neuronal correlations, we modeled short term dynamics of L2/3 murine visual cortical neurons to evaluate the relative importance of each factor to neuronal variability within single trials. We find single trial predictions improve most when conditioning on the experimentally measured local correlations in comparison to predictions based on the stimulus or running speed.
View Article and Find Full Text PDFA promising alternative to directly measuring the anatomical connections in a neuronal population is inferring the connections from the activity. We employ simulated spiking neuronal networks to compare and contrast commonly used inference methods that identify likely excitatory synaptic connections using statistical regularities in spike timing. We find that simple adjustments to standard algorithms improve inference accuracy: A signing procedure improves the power of unsigned mutual-information-based approaches and a correction that accounts for differences in mean and variance of background timing relationships, such as those expected to be induced by heterogeneous firing rates, increases the sensitivity of frequency-based methods.
View Article and Find Full Text PDFVisual stimuli evoke activity in visual cortical neuronal populations. Neuronal activity can be selectively modulated by particular visual stimulus parameters, such as the direction of a moving bar of light, resulting in well-defined trial averaged tuning properties. However, given any single stimulus parameter, a large number of neurons in visual cortex remain unmodulated, and the role of this untuned population is not well understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2018
To compensate for sensory processing delays, the visual system must make predictions to ensure timely and appropriate behaviors. Recent work has found predictive information about the stimulus in neural populations early in vision processing, starting in the retina. However, to utilize this information, cells downstream must be able to read out the predictive information from the spiking activity of retinal ganglion cells.
View Article and Find Full Text PDFJ Neurophysiol
September 2017
Temporal codes are theoretically powerful encoding schemes, but their precise form in the neocortex remains unknown in part because of the large number of possible codes and the difficulty in disambiguating informative spikes from statistical noise. A biologically plausible and computationally powerful temporal coding scheme is the Hebbian assembly phase sequence (APS), which predicts reliable propagation of spikes between functionally related assemblies of neurons. Here, we sought to measure the inherent capacity of neocortical networks to produce reliable sequences of spikes, as would be predicted by an APS code.
View Article and Find Full Text PDFThe common marmoset has recently gained interest as an animal model for systems and behavioral neuroscience. This is due in part to the advent of transgenic marmosets, which affords the possibility of combining genetic manipulations with physiological recording and behavioral monitoring to study neural systems. In this review, they will argue that the marmoset provides a unique opportunity to study the neural basis of voluntary motor control from an integrative perspective.
View Article and Find Full Text PDFPLoS Comput Biol
August 2016
Linking synaptic connectivity to dynamics is key to understanding information processing in neocortex. Circuit dynamics emerge from complex interactions of interconnected neurons, necessitating that links between connectivity and dynamics be evaluated at the network level. Here we map propagating activity in large neuronal ensembles from mouse neocortex and compare it to a recurrent network model, where connectivity can be precisely measured and manipulated.
View Article and Find Full Text PDFSpontaneous propagation of spiking within the local neocortical circuits of mature primary sensory areas is highly nonrandom, engaging specific sets of interconnected and functionally related neurons. These spontaneous activations promise insight into neocortical structure and function, but their properties in the first 2 wk of perinatal development are incompletely characterized. Previously, we have found that there is a minimal numerical sample, on the order of 400 cells, necessary to fully capture mature neocortical circuit dynamics.
View Article and Find Full Text PDFStructured multineuronal activity patterns within local neocortical circuitry are strongly linked to sensory input, motor output, and behavioral choice. These reliable patterns of pairwise lagged firing are the consequence of connectivity since they are not present in rate-matched but unconnected Poisson nulls. It is important to relate multineuronal patterns to their synaptic underpinnings, but it is unclear how effectively statistical dependencies in spiking between neurons identify causal synaptic connections.
View Article and Find Full Text PDF