Aerosolization of amorphous itraconazole may be a safe and effective method of pulmonary delivery. Our objective was to evaluate the histologic effects, immunogenic potential, and cellular uptake of aerosolized amorphous itraconazole. Mice received amorphous itraconazole (30mg/kg), excipient placebo, or saline control by nebulization every 12h for up to 12 days.
View Article and Find Full Text PDFThe biopharmaceutical classification system (BCS) is used to group pharmaceutical actives depending upon the solubility and permeability characteristics of the drug. BCS class II compounds are poorly soluble but highly permeable, exhibiting bioavailability that is limited by dissolution. The dissolution rate of BCS class II drug substances may be accelerated by enhancing the wetting of the bulk powder and by reducing the primary particle size of the drug to increase the surface area.
View Article and Find Full Text PDFThe bioavailability of high surface area danazol formulations was evaluated in a mouse model to determine what effect high supersaturation, as measured in vitro, has on the absorption of a poorly water soluble drug. Danazol, a biopharmaceutics classification system II (BCS II) compound, was used as the model drug. Evaporative precipitation into aqueous solution (EPAS) and spray freezing into liquid (SFL) technologies were used to prepare powders of danazol/PVP K-15 in a 1:1 ratio.
View Article and Find Full Text PDFPurpose: The purpose of this study was to investigate the delivery of itraconazole (ITZ) particles to a murine lung model by nebulization.
Methods: Three ITZ formulations were prepared and characterized in the dry state using contact angle, dissolution, X-ray powder diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller surface area analysis. Aerodynamic particle size distributions and lung deposition studies in 14 outbred male ICR mice were performed using aqueous dispersions of all the formulations.
The objective of this study was to determine and compare the lung and serum concentrations in mice following oral and pulmonary dosing of amorphous nanoparticulate itraconazole (ITZ) compositions as well as the Sporanox oral solution (itraconazole/Janssen). Second, the steady state partitioning of ITZ in lung tissue and circulatory compartments following repeated oral and pulmonary dosing was determined. The pulmonary formulation (ITZ-pulmonary) consisted of ITZ, polysorbate 80, and poloxamer 407 in a 1:0.
View Article and Find Full Text PDFThe objective of this study was to compare the properties of particles formed by nucleation and polymer stabilization (e.g. evaporative precipitation into aqueous solution (EPAS)) versus rapid freezing (e.
View Article and Find Full Text PDFHigh-potency danazol particles with high dissolution rates were produced by evaporative precipitation into aqueous solution (EPAS). Aqueous suspensions formed by EPAS were centrifuged to remove the nonadsorbed surfactant. The resulting surfactant-coated drug particles had extremely high drug-to-surfactant ratios greater than 5, corresponding to potencies (wt drug/wt drug + wt surfactant) as high as 93%.
View Article and Find Full Text PDF