It is an understatement that mating and DNA transfer are key events for living organisms. Among the traits needed to facilitate mating, cell adhesion between gametes is a universal requirement. Thus, there should be specific properties for the adhesion proteins involved in mating.
View Article and Find Full Text PDFIntegral membrane proteins from the ancient SPFH (stomatin, prohibitin, flotillin, HflK/HflC) protein superfamily are found in nearly all living organisms. Mammalian SPFH proteins are primarily associated with mitochondrial functions but also coordinate key processes such as ion transport, signaling, and mechanosensation. In addition, SPFH proteins are required for virulence in parasites.
View Article and Find Full Text PDFSexual agglutinins of the budding yeast Saccharomyces cerevisiae are proteins mediating cell aggregation during mating. Complementary agglutinins expressed by cells of opposite mating types "a" and "α" bind together to promote agglutination and facilitate fusion of haploid cells. By means of an innovative single-cell manipulation assay combining fluidic force microscopy with force spectroscopy, we unravel the strength of single specific bonds between a- and α-agglutinins (~100 pN) which require pheromone induction.
View Article and Find Full Text PDFThe human fungal pathogen Candida albicans maintains pathogenic and commensal states primarily through cell wall functions. The echinocandin antifungal drug caspofungin inhibits cell wall synthesis and is widely used in treating disseminated candidiasis. Signaling pathways are critical in coordinating the adaptive response to cell wall damage (CWD).
View Article and Find Full Text PDFThe human fungal pathogen Candida albicans is constantly exposed to environmental challenges impacting the cell wall. Signaling pathways coordinate stress adaptation and are essential for commensalism and virulence. The transcription factors Sko1, Cas5, and Rlm1 control the response to cell wall stress caused by the antifungal drug caspofungin.
View Article and Find Full Text PDFThe human fungal commensal can become a serious opportunistic pathogen in immunocompromised hosts. The cell adhesion protein Als1p is a highly expressed member of a large family of paralogous adhesins. Als1p can mediate binding to epithelial and endothelial cells, is upregulated in infections, and is important for biofilm formation.
View Article and Find Full Text PDFThe ubiquitous presence of SPFH (Stomatin, Prohibitin, Flotillin, HflK/HflC) proteins in all domains of life suggests that their function would be conserved. However, SPFH functions are diverse with organism-specific attributes. SPFH proteins play critical roles in physiological processes such as mechanosensation and respiration.
View Article and Find Full Text PDFCandida albicans maintains both commensal and pathogenic states in humans. Here, we have defined the genomic response to osmotic stress mediated by transcription factor Sko1. We performed microarray analysis of a sko1Δ/Δ mutant strain subjected to osmotic stress, and we utilized gene sequence enrichment analysis and enrichment mapping to identify Sko1-dependent osmotic stress-response genes.
View Article and Find Full Text PDFMany of the genes and enzymes critical for assembly and biogenesis of yeast cell walls remain unidentified or poorly characterized. Therefore, we designed a high throughput genomic screen for defects in anchoring of GPI-cell wall proteins (GPI-CWPs), based on quantification of a secreted GFP-Sag1p fusion protein. Saccharomyces cerevisiae diploid deletion strains were transformed with a plasmid expressing the fusion protein under a GPD promoter, then GFP fluorescence was determined in culture supernatants after mid-exponential growth.
View Article and Find Full Text PDFThe occurrence of highly conserved amyloid-forming sequences in Candida albicans Als proteins (H. N. Otoo et al.
View Article and Find Full Text PDFTandem repeat (TR) regions are common in yeast adhesins, but their structures are unknown, and their activities are poorly understood. TR regions in Candida albicans Als proteins are conserved glycosylated 36-residue sequences with cell-cell aggregation activity (J. M.
View Article and Find Full Text PDFThe environmental niche of each fungus places distinct functional demands on the cell wall. Hence cell wall regulatory pathways may be highly divergent. We have pursued this hypothesis through analysis of Candida albicans transcription factor mutants that are hypersensitive to caspofungin, an inhibitor of beta-1,3-glucan synthase.
View Article and Find Full Text PDFFungi are nonmotile eukaryotes that rely on their adhesins for selective interaction with the environment and with other fungal cells. Glycosylphosphatidylinositol (GPI)-cross-linked adhesins have essential roles in mating, colony morphology, host-pathogen interactions, and biofilm formation. We review the structure and binding properties of cell wall-bound adhesins of ascomycetous yeasts and relate them to their effects on cellular interactions, with particular emphasis on the agglutinins and flocculins of Saccharomyces and the Als proteins of Candida.
View Article and Find Full Text PDFCommensal and pathogenic states of Candida albicans depend on cell surface-expressed adhesins, including those of the Als family. Mature Als proteins consist of a 300-residue N-terminal region predicted to have an immunoglobulin (Ig)-like fold, a 104-residue conserved Thr-rich region (T), a central domain of a variable number of tandem repeats (TR) of a 36-residue Thr-rich sequence, and a heavily glycosylated C-terminal Ser/Thr-rich stalk region, also of variable length (N. K.
View Article and Find Full Text PDFCandida albicans maintains both commensal and pathogenic states in humans. Both states are dependent on cell surface-expressed adhesins, including those of the Als family. Heterologous expression of Als5p at the surface of Saccharomyces cerevisiae results in Als5p-mediated adhesion to various ligands, followed by formation of multicellular aggregates.
View Article and Find Full Text PDF