Publications by authors named "Jason M D'Antonio"

Cell culture/xenograft and gene arrays of clinical material document that development of castration resistant prostate cancer (CRPC) cells involves acquisition of adaptive auto-regulation resulting in >25-fold increase in Androgen Receptor (AR) protein expression in a low androgen environment. Such adaptive AR increase paradoxically is a liability in castrated hosts, however, when supraphysiologic androgen is acutely replaced. Cell synchronization/anti-androgen response is due to AR binding to replication complexes (RC) at origin of replication sites (ORS) in early G1 associated with licensing/restricting DNA for single round of duplication during S-phase.

View Article and Find Full Text PDF

The conversion of androgen receptor (AR) signaling as a mechanism of growth suppression of normal prostate epithelial cells to that of growth stimulation in prostate cancer cells is often associated with AR mutation, amplification and over-expression. Thus, down-regulation of AR signaling is commonly therapeutic for prostate cancer. The E006AA cell line was established from a hormone naïve, localized prostate cancer.

View Article and Find Full Text PDF

During middle G(1) of the cell cycle origins of replication orchestrate the ordered assembly of the pre-replication complex (pre-RC), allowing licensing of DNA required for DNA replication. Cyclin-dependent kinase activation of the pre-RC facilitates the recruitment of additional signaling factors, which triggers DNA unwinding and replication, while limiting such DNA replication to once and only once per cell cycle. For both the normal and malignant prostate, androgen is the major stimulator of cell proliferation and thus DNA replication.

View Article and Find Full Text PDF

Background: Following androgen ablation therapy, the majority of prostate cancer patients develop treatment resistance with a median time of 18-24 months to disease progression.

Methods: To identify molecular targets that promote prostate cancer cell survival and contribute to androgen independence, we evaluated changes in LNCaP cell gene expression during 12 months of androgen deprivation. At time points reflecting critical growth and phenotypic changes, we performed Affymetrix expression array analysis to examine the effects of androgen deprivation during the acute response, during the period of apparent quiescence, and following the emergence of a highly proliferative, androgen-independent prostate cancer cell phenotype (LNCaP-AI).

View Article and Find Full Text PDF

Objectives: Emerging evidence supports a role for endothelin-1 (ET-1), endothelin A and B receptors (ET(A) and ET(B), respectively), and neutral endopeptidase (NEP) in the progression of prostate carcinoma. In clinical trials for advanced prostate cancer, ET axis blockade significantly delayed the time to disease progression in a subset of patients. We examined ET axis expression in prostate cancer, prostatic intraepithelial neoplasia, and normal adjacent tissue and then analyzed the relationship of the protein levels with disease progression.

View Article and Find Full Text PDF

Endothelin-1 (ET-1) is a potent vasoconstrictor that has been shown to significantly impact many benign and malignant tissues by signaling through its two cognate receptors: ET(A) and ET(B). As ET-1 has a role in both normal and diseased kidney, we initiated studies to investigate endothelin axis expression and function in renal cell carcinoma (RCC). In this study, relatively high levels of ET-1 were detected in all six human RCC cell lines investigated.

View Article and Find Full Text PDF

A proteomic analysis of islets was undertaken to determine the protein constituents of normal adult mouse islets. Unexpectedly, we identified several islet proteins that are associated with the pathogenesis of Alzheimer's disease. Some of these proteins had chaperone activity that is integral to proper protein folding.

View Article and Find Full Text PDF