Habituation and sensitization (nonassociative learning) are among the most fundamental forms of learning and memory behavior present in organisms that enable adaptation and learning in dynamic environments. Emulating such features of intelligence found in nature in the solid state can serve as inspiration for algorithmic simulations in artificial neural networks and potential use in neuromorphic computing. Here, we demonstrate nonassociative learning with a prototypical Mott insulator, nickel oxide (NiO), under a variety of external stimuli at and above room temperature.
View Article and Find Full Text PDFStochastic gradient descent requires that training samples be drawn from a uniformly random distribution of the data. For a deployed system that must learn online from an uncontrolled and unknown environment, the ordering of input samples often fails to meet this criterion, making lifelong learning a difficult challenge. We exploit the locality of the unsupervised Spike Timing Dependent Plasticity (STDP) learning rule to target local representations in a Spiking Neural Network (SNN) to adapt to novel information while protecting essential information in the remainder of the SNN from catastrophic forgetting.
View Article and Find Full Text PDF