Publications by authors named "Jason Laskey"

Stereochemically and structurally complex cyclic dinucleotide-based stimulator of interferon genes (STING) agonists were designed and synthesized to access a previously unexplored chemical space. The assessment of biochemical affinity and cellular potency, along with computational, structural, and biophysical characterization, was applied to influence the design and optimization of novel STING agonists, resulting in the discovery of MK-1454 as a molecule with appropriate properties for clinical development. When administered intratumorally to immune-competent mice-bearing syngeneic tumors, MK-1454 exhibited robust tumor cytokine upregulation and effective antitumor activity.

View Article and Find Full Text PDF

The innate immune agonist STING (STimulator of INterferon Genes) binds its natural ligand 2'3'-cGAMP (cyclic guanosine-adenosine monophosphate) and initiates type I IFN production. This promotes systemic antigen-specific CD8 T-cell priming that eventually provides potent antitumor activity. To exploit this mechanism, we synthesized a novel STING agonist, MSA-1, that activates both mouse and human STING with higher potency than cGAMP.

View Article and Find Full Text PDF

Hematopoietic progenitor kinase 1 (HPK1), a hematopoietic cell-specific Ste20-related serine/threonine kinase, is a negative regulator of signal transduction in immune cells, including T cells, B cells, and dendritic cells (DCs). In mice, HPK1 deficiency subverts inhibition of the anti-tumor immune response and is associated with functional augmentation of anti-tumor T cells. We have used a potent, small molecule HPK1 inhibitor, Compound 1, to investigate the effects of pharmacological intervention of HPK1 kinase activity in immune cells.

View Article and Find Full Text PDF

Hematopoietic progenitor kinase 1 (HPK1), also referred to as mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1), is a serine/threonine kinase that negatively regulates T-cell signaling by phosphorylating Ser376 of Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP-76), a critical mediator of T-cell receptor activation. HPK1 loss of function mouse models demonstrated enhanced immune cell activation and beneficial antitumor activity. To enable discovery and functional characterization of high-affinity small-molecule HPK1 inhibitors, we have established high-throughput biochemical, cell-based, and novel pharmacodynamic (PD) assays.

View Article and Find Full Text PDF

Pharmacological activation of the STING (stimulator of interferon genes)-controlled innate immune pathway is a promising therapeutic strategy for cancer. Here we report the identification of MSA-2, an orally available non-nucleotide human STING agonist. In syngeneic mouse tumor models, subcutaneous and oral MSA-2 regimens were well tolerated and stimulated interferon-β secretion in tumors, induced tumor regression with durable antitumor immunity, and synergized with anti-PD-1 therapy.

View Article and Find Full Text PDF

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) has been reported to mediate both tumorigenic and anti-tumor effects . Blockade of the CEACAM1 signaling pathway has recently been implicated as a novel mechanism for cancer immunotherapy. CC1, a mouse anti-CEACAM1 monoclonal antibody (mAb), has been widely used as a pharmacological tool in preclinical studies to inform on CEACAM1 pathway biology although limited data are available on its CEACAM1 blocking characteristics or pharmacodynamic-pharmacokinetic profiles.

View Article and Find Full Text PDF

Unlabelled: Next-generation sequencing was used to identify Notch mutations in a large collection of diverse solid tumors. NOTCH1 and NOTCH2 rearrangements leading to constitutive receptor activation were confined to triple-negative breast cancers (TNBC; 6 of 66 tumors). TNBC cell lines with NOTCH1 rearrangements associated with high levels of activated NOTCH1 (N1-ICD) were sensitive to the gamma-secretase inhibitor (GSI) MRK-003, both alone and in combination with paclitaxel, in vitro and in vivo, whereas cell lines with NOTCH2 rearrangements were resistant to GSI.

View Article and Find Full Text PDF

Androgen receptors have been shown to play a critical role in prostate cancer. We used ultrasound imaging techniques to track tumor response to antiandrogen and rapamycin treatment in a prostate-specific Pten-deleted mouse model of cancer. Depletion of androgens by either surgical or chemical castration significantly inhibited tumor growth progression without altering the activation of Akt and mammalian target of rapamycin (mTOR).

View Article and Find Full Text PDF