Publications by authors named "Jason L Vincent"

Maleidrides are a class of bioactive secondary metabolites unique to filamentous fungi, which contain one or more maleic anhydrides fused to a 7-, 8- or 9- membered carbocycle (named heptadrides, octadrides and nonadrides respectively). Herein structural and biosynthetic studies on the antifungal octadride, zopfiellin, and nonadrides scytalidin, deoxyscytalidin and castaneiolide are described. A combination of genome sequencing, bioinformatic analyses, gene disruptions, biotransformations, isotopic feeding studies, NMR and X-ray crystallography revealed that they share a common biosynthetic pathway, diverging only after the nonadride deoxyscytalidin.

View Article and Find Full Text PDF

Limonoids are natural products made by plants belonging to the Meliaceae (Mahogany) and Rutaceae (Citrus) families. They are well known for their insecticidal activity, contribution to bitterness in citrus fruits, and potential pharmaceutical properties. The best known limonoid insecticide is azadirachtin, produced by the neem tree ().

View Article and Find Full Text PDF

Three novel dimeric xanthones, cryptosporioptides A-C were isolated from sp. 8999 and their structures elucidated. Methylation of cryptosporioptide A gave a methyl ester with identical NMR data to cryptosporioptide, a compound previously reported to have been isolated from the same fungus.

View Article and Find Full Text PDF

Two new dihydroxy-xanthone metabolites, agnestins A and B, were isolated from along with a number of related benzophenones and xanthones including monodictyphenone. The structures were elucidated by NMR analyses and X-ray crystallography. The agnestin () biosynthetic gene cluster was identified and targeted gene disruptions of the PKS, Baeyer-Villiger monooxygenase, and other oxido-reductase genes revealed new details of fungal xanthone biosynthesis.

View Article and Find Full Text PDF

The cycloaspeptides are bioactive pentapeptides produced by various filamentous fungi, which have garnered interest from the agricultural industry due to the reported insecticidal activity of the minor metabolite, cycloaspeptide E. Genome sequencing, bioinformatics and heterologous expression confirmed that the cycloaspeptide gene cluster contains a minimal 5-module nonribosomal peptide synthetase (NRPS) and a new type of -acting -methyltransferase (-MeT). Deletion of the -MeT encoding gene and subsequent feeding studies determined that two modules of the NRPS preferentially accept and incorporate -methylated amino acids.

View Article and Find Full Text PDF

The biosynthesis of the herbicide cornexistin in the fungus Paecilomyces variotii was investigated by full sequencing of its genome, knockout of key genes within its biosynthetic gene cluster and isolation and identification of intermediate compounds. The general biosynthetic pathway resembles that of byssochlamic acid and other nonadrides in the early stages, but differs in requiring fewer enzymes in the key nonadride dimerisation step, and in the removal of one maleic anhydride moiety.

View Article and Find Full Text PDF

Fungal maleidrides are an important family of bioactive secondary metabolites that consist of 7, 8, or 9-membered carbocycles with one or two fused maleic anhydride moieties. The biosynthesis of byssochlamic acid (a nonadride) and agnestadride A (a heptadride) was investigated through gene disruption and heterologous expression experiments. The results reveal that the precursors for cyclization are formed by an iterative highly reducing fungal polyketide synthase supported by a hydrolase, together with two citrate-processing enzymes.

View Article and Find Full Text PDF

The filamentous fungus Byssochlamys fulva strain IMI 40021 produces (+)-byssochlamic acid 1, its novel dihydroanalogue 2 and four related secondary metabolites. Agnestadrides A, 17 and B, 18 constitute a novel class of seven-membered ring, maleic anhydride-containing (hence termed heptadride) natural products. The putative maleic anhydride precursor 5 for both nonadride and heptadride biosynthesis was isolated as a fermentation product for the first time and its structure confirmed by synthesis.

View Article and Find Full Text PDF