Publications by authors named "Jason L Ross"

Article Synopsis
  • The Mayo-Baylor RIGHT 10K Study focused on using pharmacogenomics to improve drug prescriptions based on genetic information in a large population.
  • Researchers sequenced the DNA of over 10,000 participants to identify genetic variations affecting drug responses, and integrated these findings into electronic health records.
  • Results showed that 79% of participants had actionable genetic variants affecting their medication, highlighting the need for a proactive approach to personalized medicine in clinical care.
View Article and Find Full Text PDF

The presence of personally identifiable information (PII) in natural language portions of electronic health records (EHRs) constrains their broad reuse. Despite continuous improvements in automated detection of PII, residual identifiers require manual validation and correction. Here, we describe an automated de-identification system that employs an ensemble architecture, incorporating attention-based deep-learning models and rule-based methods, supported by heuristics for detecting PII in EHR data.

View Article and Find Full Text PDF

The concept of optimizing health care by understanding and generating knowledge from previous evidence, ie, the Learning Health-care System (LHS), has gained momentum and now has national prominence. Meanwhile, the rapid adoption of electronic health records (EHRs) enables the data collection required to form the basis for facilitating LHS. A prerequisite for using EHR data within the LHS is an infrastructure that enables access to EHR data longitudinally for health-care analytics and real time for knowledge delivery.

View Article and Find Full Text PDF

Objective: To report the design and implementation of the Right Drug, Right Dose, Right Time-Using Genomic Data to Individualize Treatment protocol that was developed to test the concept that prescribers can deliver genome-guided therapy at the point of care by using preemptive pharmacogenomics (PGx) data and clinical decision support (CDS) integrated into the electronic medical record (EMR).

Patients And Methods: We used a multivariate prediction model to identify patients with a high risk of initiating statin therapy within 3 years. The model was used to target a study cohort most likely to benefit from preemptive PGx testing among the Mayo Clinic Biobank participants, with a recruitment goal of 1000 patients.

View Article and Find Full Text PDF

Objective: To create a cohort for cost-effective genetic research, the Mayo Genome Consortia (MayoGC) has been assembled with participants from research studies across Mayo Clinic with high-throughput genetic data and electronic medical record (EMR) data for phenotype extraction.

Participants And Methods: Eligible participants include those who gave general research consent in the contributing studies to share high-throughput genotyping data with other investigators. Herein, we describe the design of the MayoGC, including the current participating cohorts, expansion efforts, data processing, and study management and organization.

View Article and Find Full Text PDF