The study of charge transport through increasingly complex small molecules will benefit from a detailed understanding of how contaminants from the environment affect molecular conduction. This should provide a clearer picture of the electronic characteristics of molecules by eliminating interference from adsorbed species. Here we use magnetically assembled microsphere junctions incorporating thiol monolayers to provide insight into changing electron transport characteristics resulting from exposure to air.
View Article and Find Full Text PDFThe synthesis of poly(hydridocarbyne), one of a class of carbon-based random network polymers and a structural isomer of polyacetlyene, is reported. The network backbone of this polymer is primarily composed of tetrahedrally hybridized carbon atoms, each bearing one hydride substituent and linked via three carbon-carbon single bonds into a three-dimensional random network of fused rings. This atomic-level carbon network backbone confers unusual properties on the polymer, including facile thermal decomposition to form diamond or diamond-like carbon high-quality films at atmospheric pressure, by direct deposition or by chemical vapor deposition (CVD), without the use of hydrogen or any other reagent.
View Article and Find Full Text PDF